Space Industry and Business News  
SOLAR DAILY
New hybrid device can both capture and store solar energy
by Staff Writers
Houston TX (SPX) Nov 21, 2019

The hybrid device consists of a molecular storage material (MSM) and a localized phase-change material (L-PCM), separated by a silica aerogel to maintain the necessary temperature difference.

Researchers from the University of Houston have reported a new device that can both efficiently capture solar energy and store it until it is needed, offering promise for applications ranging from power generation to distillation and desalination.

Unlike solar panels and solar cells, which rely on photovoltaic technology for the direct generation of electricity, the hybrid device captures heat from the sun and stores it as thermal energy. It addresses some of the issues that have stalled wider-scale adoption of solar power, suggesting an avenue for using solar energy around-the-clock, despite limited sunlight hours, cloudy days and other constraints.

The work, described in a paper published Wednesday in Joule, combines molecular energy storage and latent heat storage to produce an integrated harvesting and storage device for potential 24/7 operation. The researchers report a harvesting efficiency of 73% at small-scale operation and as high as 90% at large-scale operation.

Up to 80% of stored energy was recovered at night, and the researchers said daytime recovery was even higher.

Hadi Ghasemi, Bill D. Cook Associate Professor of Mechanical Engineering at UH and a corresponding author for the paper, said the high efficiency harvest is due, in part, to the ability of the device to capture the full spectrum of sunlight, harvesting it for immediate use and converting the excess into molecular energy storage.

The device was synthesized using norbornadiene-quadricyclane as the molecular storage material, an organic compound that the researchers said demonstrates high specific energy and exceptional heat release while remaining stable over extended storage times. Ghasemi said the same concept could be applied using different materials, allowing performance - including operating temperatures and efficiency - to be optimized.

T. Randall Lee, Cullen Distinguished University Chair professor of chemistry and a corresponding author, said the device offers improved efficiency in several ways: The solar energy is stored in molecular form rather than as heat, which dissipates over time, and the integrated system also reduces thermal losses because there is no need to transport the stored energy through piping lines.

"During the day, the solar thermal energy can be harvested at temperatures as high as 120 degrees centigrade (about 248 Fahrenheit)," said Lee, who also is a principle investigator for the Texas Center for Superconductivity at UH. "At night, when there is low or no solar irradiation, the stored energy is harvested by the molecular storage material, which can convert it from a lower energy molecule to a higher energy molecule."

That allows the stored energy to produce thermal energy at a higher temperature at night than during the day - boosting the amount of energy available even when the sun is not shining, he said.

Research paper


Related Links
University of Houston
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
NASA sending solar power generator developed at Ben-Gurion to ISS
Beer-Sheva, Israel (SPX) Nov 15, 2019
A new solar power generator prototype developed by Ben-Gurion University of the Negev (BGU) and research teams in the United States, will be deployed on the first 2020 NASA flight launch to the International Space Station. According to research published in Optics Express, the compact, microconcentrator photovoltaic system could provide unprecedented watt per kilogram of power critical to lowering costs for private space flight. As the total costs of a launch are decreasing, solar power syst ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
A four-way switch promises greater tunability of layered materials

Artificial intelligence to run the chemical factories of the future

Research reveals new state of matter with a Cooper pair metal

Top US court to hear key Google-Oracle software case

SOLAR DAILY
GenDyn nets $783M for next-gen Navy MUOS operations

F-35 to Space? US Air Force looks to connect stealth fighters to X-37B Spacecraft

U.S. Air Force testing secure data links between F-22, F-35

GatorWings wins DARPA Spectrum Collaboration Challenge

SOLAR DAILY
SOLAR DAILY
Russia to launch glass sphere into space before new year to obtain accurate Earth data

Lockheed Martin GPS Spatial Temporal Anti-Jam Receiver System to be integrated in F-35 modernization

GPS III Ground System Operations Contingency Program Nearing Operational Acceptance

UK should ditch plans for GPS to tival Galileo

SOLAR DAILY
EasyJet flies into 'greenwashing' row over zero-carbon pledge

FSU researchers develop thin heat shield for superfast aircraft

Congress, Pentagon to hold off on multiyear F-35 contract

German air force rejects delivery of two Airbus planes

SOLAR DAILY
New 'synthetic' method for making microchips could help

HP rejects takeover bid from Xerox

Stretchable, degradable semiconductors

Large scale integrated circuits produced in printing press

SOLAR DAILY
Ozone hole set to close

CloudFerro is contracted by DLR to provide the next stage of CODE-DE

Simera Sense and Space Inventor to collaborate on offering earth observation solutions

Satellite and reanalysis data can substitute field observations over Asian water tower

SOLAR DAILY
The man who saved Lanzarote from overdevelopment

Air pollution shuts schools in Tehran; As Delhi hits emergency levels

Simulated sunlight reveals how 98% of plastics at sea go missing each year

Medicines pose global environmental risk, experts warn









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.