Subscribe free to our newsletters via your
. Space Industry and Business News .




TECH SPACE
New tunable laser diode for high-frequency efficiency
by Staff Writers
Sendai, Japan (SPX) Jun 09, 2015


The novel heterogeneous wavelength tunable laser diode consists of QD technology and silicon photonics. Image courtesy Tomohiro Kita. For a larger version of this image please go here.

Researchers at Tohoku University and the National Institute of Information and Communications Technology (NICT) in Japan, have developed a novel ultra-compact heterogeneous wavelength tunable laser diode. The heterogeneous laser diode was realized through a combination of silicon photonics and quantum-dot (QD) technology, and demonstrates a wide-range tuning-operation.

The researchers presented their work at a Conference on Lasers and Electro-Optics (CLEO) in San Jose, California, on May 13. The related paper was also be published in Applied Physics Express vol. 8, 062701 on May 20.

Recent high-capacity optical transmission systems are based on wavelength-division multiplexing (WDM) systems with dense frequency channels. The frequency channels in C-band (conventional band: 1530- 1565 nm) are overcrowded and the frequency utilization efficiency is saturated in such WDM systems.

On the other hand, extensive and unexploited frequency resources are buried in near-infra-red wavelengths (1000-1300 nm). Additionally, photonic devices are required to have smaller footprints and lower power consumption in short- reach data transmission. The compact and low power consumption wavelength tunable laser diode is a key device to tap the undeveloped frequency bands for higher capacity data transmission systems.

The heterogeneous wavelength tunable laser diode, consisting of the QD and the silicon photonics, is a promising candidate to realize such a compact and broad-band light source.

This is because the QD has large optical gains of around 1000 -1300 nm wavelength, and silicon photonics provide a promising platform for highly integrated photonics devices - so a novel wavelength-tunable laser diode, combining QD and silicon photonics technologies, was proposed.

The cooperative research group led by Tomohiro Kita and Naokatsu Yamamoto demonstrated a wide range tuning operation of around 1250 nm wavelength with an ultra-small device footprint. The obtained frequency tuning-range of 8.8 THz is a world record for the category of QD and silicon photonics heterogeneous wavelength tunable laser diodes.

It is expected that the fusing of the QD technology and silicon photonics will provide a breakthrough for the development of an effective and compact light source.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Tohoku University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Russain physicists from study laser beam compressed into thin filament
Moscow, Russia (SPX) Jun 05, 2015
A group of scientists from the Lebedev Physical Institute of the Russian Academy of Sciences, Moscow Institute of Physics and Technology and Moscow State University recently presented their research into the process of laser pulse filamentation - the effect produced when a laser beam propagating in air focuses into a filament. The researchers discovered how this process influences the preliminar ... read more


TECH SPACE
How natural channel proteins move in artificial membranes

Researchers simulate behavior of 'active matter'

An inexpensive rival to graphene aerogels

Magnetic nanoparticles could offer alternative to rare Earth magnets

TECH SPACE
Harris providing Australia with support for radio system

US Navy accepts third LMC-Built MUOS comsat

Continued Momentum for Commercial Satellite Acquisition Reform

IOC status for upgraded French AWACS aircraft

TECH SPACE
SpaceX achieves pad abort milestone approval for Commercial Crew

MSG-4 and S1 C4 make initial contact with Ariane 5 launcher hardware

Angara to launch first manned rocket from Vostochny in 2023

Airbus developing reusable space rocket launcher

TECH SPACE
Russia, China Plan to Equip Commercial Trucks With Glonass, BeiDou

GLONASS to Go on Stream in 2015

Satellites make a load of difference to bridge safety

Advanced Navigation Releases Interface and Logging Unit

TECH SPACE
Kuwait wants to buy Airbus helicopters for air force

Northrop Grumman unveils first NATO ISR aircraft

U.S. orders components for 94 F-35s

The rise and fall of giant balloons on the edge of space

TECH SPACE
Exploiting the extraordinary properties of a new semiconductor

Futuristic components on silicon chips, fabricated successfully

New chip makes testing for antibiotic-resistant bacteria faster, easier

A chip placed under the skin for more precise medicine

TECH SPACE
NASA Releases Detailed Global Climate Change Projections

Apple dispatches fleet of cars to get map service data

Yahoo folding up map site as priorities shift

Egypt Mulls Buying Russian Satellite Images After EgyptSat 2 Loss

TECH SPACE
Spain's crisis has taken environmental toll: Greenpeace

Researchers say anti-pollution rules have uncertain effects

Greenpeace India vows to win 'malicious' funds battle

Wetlands continue to reduce nitrates




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.