Space Industry and Business News  
STELLAR CHEMISTRY
New epoch of miniaturized Cherenkov detectors
by Staff Writers
Beijing, China (SPX) Jan 05, 2022

Schematics of surface Dyakonov-Cherenkov radiation. b, Field pattern of Cherenkov radiation with Dyakonov surface waves. c-d, Field patterns of Cherenkov radiation without Dyakonov surface waves.

Cherenkov radiation refers to the photon emission from the swift charged particle moves with the velocity greater than the phase velocity of light in the surrounding materials. Ever since its experimental observation by a Soviet physicist P.A. Cherenkov in 1934, Cherenkov radiation has been widely explored and applied in many research fields ranging from cosmology and information, to medical and life science. Among all these applications, the detection of high-energy particles (i.e. identifying the type of detected particles from the direction of the photon emission) is the most important one.

With the help of Cherenkov radiation, scientists discovered many elementary particles including anti-proton and J-particle. Owing to its impacts on both the fundamental research and practical applications, Cherenkov radiation and its related applications were awarded at least six Nobel Prizes in Physics (in 1958, 1959, 1988, 1995, 2002 and 2015, respectively).

Although Cherenkov detectors are widely used in the high-energy and particle physics, their bulky sizes hinder their applications to emerging research fields such as particle detection on chip. Thus, achieving miniaturized particle detectors could potentially broadens the applications of Cherenkov detection. Surface waves propagating at the interface of two different materials provide a possible solution towards this goal.

Generally speaking, there are two major branches of surface waves in nature: 1, surface plasmons propagating along the metallodielectric interface; 2, Dyakonov surface waves propagating along the surface of a birefringent material.

Since 1950s, surface plasmons have been widely applied to surface-enhanced Raman spectroscopy, surface-enhanced sensing, and surface-enhanced fluorescence, etc. Recently, surface plasmons were deployed to enhance Cherenkov radiation and achieve integrated Cherenkov light sources.

Nevertheless, the implementation of a miniaturized Cherenkov detector with surface plasmons is still challenging, mainly due to following two reasons:

1. the significant metallic dissipation hinders the detection of Cherenkov signals in the far field;

2. the strong chromatic dispersion of plasmons present an inherent limit on the working bandwidth of the detector.

On the contrary, Dyakonov surface waves can be excited in an all-dielectric platform with negligible dissipation loss and weak chromatic dispersion. Despite of these advantages, applications of Dyakonov surface waves have been thus far quite limited, due to the lack of efficient excitation mechanism.

This research team led by Prof. Yu Luo from Nanyang Technological University has uncovered a new type of free-electron radiations, namely surface Dyakonov-Cherenkov radiation. It is achieved by exploring the interaction between the free charged particle and Dyakonov surface waves. Such a discovery not only facilitates the development of miniaturized Cherenkov detectors, but may also inspires future explorations of Dyakonov surface waves.

The research team investigated the emission behaviors of a swift charged particle moving atop the surface of a birefringent crystal. They found that when the particle velocity and trajectory fulfill a specific condition, the swift charged particle allows for efficient photon emission in terms of Dyakonov surface waves.

The surface Dyakonov-Cherenkov radiation is one of the best candidates to achieve miniaturized particle detectors on chip. First, Dyakonov surface waves can significantly enhance the photon emission, offering a feasible route to reduce the interaction length of the swift charged particle and matters. Second, due to the negligible dissipation loss and weak chromatic dispersion of Dyakonov surface waves, the emitted photons can be readily collected in the far field.

Remarkably, the research team also found that the excitation of surface Dyakonov-Cherenkov radiation is highly sensitive to both the particle trajectory and velocity value. Only when the particle trajectory falls within the vicinity of a particular direction, the surface Dyakonov-Cherenkov radiation is allowed. Such a unique property results from the directional nature of Dyakonov surface waves. It allows the surface Dyakonov-Cherenkov radiation to detect the particle trajectory, with the accuracy up to 10 mrad.

The surface Dyakonov-Cherenkov radiation studied in this work also bridges the research gap between Cherenkov radiation and Dyakonov surface waves, and may produce far-reaching impacts on both areas. In the realm of Cherenkov radiation, this work not only facilitates the development of next-generation miniaturized Cherenkov detectors, but also offers a unique technique to track and collimate the particle beams, which is highly desired in nonlinear, ultrafast and quantum optics. In the realm of Dyakonov surface waves, the efficient excitation mechanism revealed in this work may open a new research area of Dyakonov surface optics.

Research Report: "Surface Dyakonov-Cherenkov radiation"


Related Links
Institute of Optics, Fine Mechanics And Physics, CAS
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Integrated photonics meets electron microscopy
Lausanne, Switzerland (SPX) Jan 01, 2022
The transmission electron microscope (TEM) can image molecular structures at the atomic scale by using electrons instead of light, and has revolutionized materials science and structural biology. The past decade has seen a lot of interest in combining electron microscopy with optical excitations, trying, for example, to control and manipulate the electron beam by light. But a major challenge has been the rather weak interaction of propagating electrons with photons. In a new study, researchers hav ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Metaverse gets touch of reality at CES

Scientists invent lead-free composite shielding material for neutron and gamma-ray

Debris from failed Russian rocket falls into sea near French Polynesia

Russian rocket is in uncontrolled descent to Earth

STELLAR CHEMISTRY
SPAINSAT NG program successfully passes Critical Design Review

Honeywell, SES and Hughes demonstrate Multinetwork Airborne Connectivity

Airbus and OneWeb expand their partnership to connect European defence and security forces

SES Government Solutions releases new unified operational network

STELLAR CHEMISTRY
STELLAR CHEMISTRY
Two new satellites mark further enlargement of Galileo

Galileo satellites given green light for launch

Brain and coat from RUAG Space for Galileo navigation satellites

Galileo pathfinder de-commissioned after 16 years of in-orbit service

STELLAR CHEMISTRY
South Korea grounds F-35s after malfunction forces emergency landing

Two killed in Israeli military helicopter crash: army

Discussing climate-neutral flight

NASA's X-59 kicks off 2022 in Texas for ground testing

STELLAR CHEMISTRY
Organic light emitting diodes operated by 1.5 V battery

Fueling the future with new perovskite-related oxide-ion conductors

Semiconductors reach the quantum world

Researchers use electron microscope to turn nanotube into tiny transistor

STELLAR CHEMISTRY
China launches Tianhui 4 satellite into orbit

UK sets New Year's Day temperature record

UK records warmest ever New Year's Eve

China receives data from newly launched resource satellite

STELLAR CHEMISTRY
Rio's low-key New Year generates 50% less trash

France bans plastic packaging for fruit and veg

Philippines lifts ban on new open-pit mines

Ship captain's sentence for Mauritius oil spill commuted









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.