Space Industry and Business News  
SOLAR DAILY
New discovery settles long-standing debate about photovoltaic materials
by Staff Writers
Ames, IA (SPX) Apr 20, 2020

Ames Laboratory scientists discovered evidence of the Rashba effect by using extremely strong and powerful bursts of light firing at trillions of cycles per second to switch on or synchronize a "beat" of quantum motion within a material sample; and a second burst of light to "listen" to the beats, triggering an ultrafast receiver to record images of the oscillating state of matter.

Scientists have theorized that organometallic halide perovskites-- a class of light harvesting "wonder" materials for applications in solar cells and quantum electronics-- are so promising due to an unseen yet highly controversial mechanism called the Rashba effect.

Scientists at the U.S. Department of Energy's Ames Laboratory have now experimentally proven the existence of the effect in bulk perovskites, using short microwave bursts of light to both produce and then record a rhythm, much like music, of the quantum coupled motion of atoms and electrons in these materials.

Organometallic halide perovskites were first introduced in solar cells about a decade ago. Since then, they have been studied intensely for use in light-harvesting, photonics, and electronic transport devices, because they deliver highly sought-after optical and dielectric properties. They combine the high energy conversion performance of traditional inorganic photovoltaic devices, with the inexpensive material costs and fabrication methods of organic versions.

Research thus far hypothesized that the materials' extraordinary electronic, magnetic and optical properties are related to the Rashba effect, a mechanism that controls the magnetic and electronic structure and charge carrier lifetimes.

But despite recent intense study and debate, conclusive evidence of Rashba effects in bulk organometallic halide perovskites, used in the most efficient perovskite solar cells, remained highly elusive.

Ames Laboratory scientists discovered that evidence by using terahertz light, extremely strong and powerful bursts of light firing at trillions of cycles per second, to switch on or synchronize a "beat" of quantum motion within a material sample; and a second burst of light to "listen" to the beats, triggering an ultrafast receiver to record images of the oscillating state of matter.

This approach overcame the limitations of conventional detection methods, which did not have the resolution or sensitivity to capture the evidence of the Rashba effect hidden in the material's atomic structure.

"Our discovery settles the debate of the presence of Rashba effects: They do exist in bulk metal halide perovskite materials." said Jigang Wang, senior scientist at Ames Laboratory and professor of physics at Iowa State University.

"By steering quantum motions of atoms and electrons to engineer Rashba split bands, we achieve a significant leap forward for the fundamental discovery of the effect which had been hidden by random local fluctuations, and also open exciting opportunities for spintronic and photovoltaic applications based on quantum control of perovskite materials."

The research is further discussed in the paper, "Ultrafast Control of Excitonic Rashba Fine Structure by Phonon Coherence in the Metal Halide Perovskite CH3NH3PbI3," authored by Z. Liu, C. Vaswani, X. Yang, X. Zhao, Y. Yao, Z. Song, D. Cheng, Y. Shi , L. Luo, D.-H. Mudiyanselage, C. Huang, J.-M. Park, R.H.J. Kim, J. Zhao,Y. Yan, K.-M. Ho, and J. Wang; and published in Physical Review Letters.

Wang and his collaborators at Ames Laboratory and Iowa State University Department of Physics and Astronomy were responsible for terahertz quantum beat spectroscopy, model building, and density functional theoretical simulations. High quality perovskite materials were provided by the University of Toledo. Phonon spectra simulations were performed at the University of Science and Technology of China.


Related Links
Ames Laboratory
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Shedding light on dark traps
Cambridge UK (SPX) Apr 16, 2020
In the last decade, perovskites - a diverse range of materials with a specific crystal structure - have emerged as promising alternatives to silicon solar cells, as they are cheaper and greener to manufacture, while achieving a comparable level of efficiency. However, perovskites still show significant performance losses and instabilities, particularly in the specific materials that promise the highest ultimate efficiency. Most research to date has focused on ways to remove these losses, but their ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Supporting small airports using virtual reality

Russian cosmonauts begin 3D bioprinting experiment on ISS

Creating custom light using 2D materials

Raytheon awarded $17 million for dual band radar spares for USS Ford

SOLAR DAILY
US Space Force pens $1B in contracts for unjammable modems

AEHF-6 Satellite Actively Communicating With U.S. Space Force

AEHF-6 satellite completes protected satellite constellation

Sixth Advanced Extremely High Frequency satellite ready for launch

SOLAR DAILY
SOLAR DAILY
USSF reschedules next GPS launch

China to launch last satellite for BeiDou navigation system in May

L3Harris Technologies passes PDR for experimental satellite navigation program

Wireless network helps scientists track small animals

SOLAR DAILY
Taiwan virus aid sparks calls to rename China Airlines

Studying pterosaurs and other fossil flyers to better engineer manmade flight

Optimised flight routes for climate-friendly air transport

Transportation Command head questions Air Force's plan for refueler upgrades

SOLAR DAILY
Pushing the limits of 2D supramolecules

A key development in the drive for energy-efficient electronics

Stretchable supercapacitors to power tomorrow's wearable devices

To tune up your quantum computer, better call an AI mechanic

SOLAR DAILY
How NASA is Helping the World Breathe More Easily

Satellites providing clear picture of greenhouse gases

Cloud brightening won't curb global warming

Unusual ozone hole opens over the Arctic

SOLAR DAILY
Soot may only be half the problem when it comes to cookstoves

Bangladesh's water teeming with drugs, chemicals, study says

Micro-pollution ravaging China and South Asia: study

Toxic mineral selenium to blame for spinal deformities in California Delta fish









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.