. Space Industry and Business News .




.
STELLAR CHEMISTRY
New data still have scientists in dark over dark matter
by Staff Writers
Chicago IL (SPX) Jun 09, 2011

Juan Collar, associate professor in physics, holds one of the early germanium detector prototypes similar to the one being used in the Coherent Germanium Neutrino Technology (CoGeNT) experiment, situated nearly half a mile deep in the Soudan Mine in Minnesota. Such underground locations help screen out false dark-matter signals from other natural sources of radiation. Detectors of this kind are used because of their sensitivity to weak levels of radiation. Courtesy of CoGeNT Collaboration

A dark-matter experiment deep in the Soudan mine of Minnesota now has detected a seasonal signal variation similar to one an Italian experiment has been reporting for more than a decade.

The new seasonal variation, recorded by the Coherent Germanium Neutrino Technology (CoGeNT) experiment, is exactly what theoreticians had predicted if dark matter turned out to be what physicists call Weakly Interacting Massive Particles (WIMPs).

"We cannot call this a WIMP signal. It's just what you might expect from it," said Juan Collar, associate professor in physics at the University of Chicago. Collar and John Orrell of Pacific Northwest National Laboratory, who lead the CoGeNT collaboration, are submitting their results in two papers to Physical Review Letters.

WIMPS might have caused the signal variation, but it also might be a random fluctuation, a false reading sparked by the experimental apparatus itself or even some exotic new phenomenon in atomic physics, Collar said.

Dark matter accounts for nearly 90 percent of all matter in the universe, yet its identity remains one of the biggest mysteries of modern science. Although dark matter is invisible to telescopes, astronomers know it is there from the gravitational influence it exerts over galaxies.

Theorists had predicted that dark matter experiments would detect an annual modulation because of the relative motion of the Earth and sun with respect to the plane of the Milky Way galaxy.

The sun moves in the plane of the galaxy on the outskirts of one of its spiral arms at a speed of 220 kilometers per second (136 miles per second). The Earth orbits the sun at 30 kilometers per second (18.5 miles per second). During winter, Earth moves in roughly the opposite direction of the sun's movement through the galaxy, but during summer, their motion becomes nearly aligned in the same direction. This alignment increases Earth's net velocity through a galactic halo of dark matter particles, whose existence scientists have inferred from numerous astronomical observations.

Like a cloud of gnats
WIMPs would be moving in random directions in this halo, at velocities similar to the sun's. "You find yourself in a situation similar to a car moving through a cloud of gnats," Collar explained. "The faster the car goes, the more gnats will hit the front windshield."

CoGeNT seems to have detected an average of one WIMP particle interaction per day throughout its 15 months of operation, with a seasonal variation of approximately 16 percent. Energy measurements are consistent with a WIMP mass of approximately 6 to 10 times the mass of a proton.

These results could be consistent with those of the Italian DArk MAtter (DAMA) experiment, which has detected a seasonal modulation for years. "We are in the very unfortunate situation where you cannot tell if we are barely excluding DAMA or barely in agreement. We have to clarify that," Collar said.

In particle physics, he further cautioned, agreement between two or three experiments doesn't necessarily mean much. The pentaquark is a case in point. Early this century, approximately 10 experiments found hints of evidence for the pentaquark, a particle consisting of five quarks, when no other known particle had more than three. But as time went on, new experiments were unable to see it.

"It's just incredible," said UChicago physics Professor Jonathan Rosner. "People still speculate on whether it's real."

Collar and his colleagues have calculated the probability that their finding is a fluke to be five-tenths of a percent, or 2.8 sigma in particle physics parlance.

"It's not an exact science yet, unfortunately," Collar said. "But with the information we have, the usual set of assumptions that we make about the halo and these particles, their behavior in this halo, things seem to be what you would expect."

Other dark-matter experiments, including Xenon100, have not detected the seasonal signal that CoGeNT and DAMA have reported.

"If you really wanted to see an effect, you could argue that the Xenon100 people don't have the sensitivity to Juan's result," said Rosner, who is not a member of the CoGeNT collaboration. "On the other hand, they've done a number of studies of what their sensitivity is at low energies and they believe they're excluding this result."

Interrupted by fire
CoGeNT operated from December 2009 until interrupted by a fire in the Soudan mine in March 2011. Fifteen months of data collection is a relatively brief period for a dark-matter experiment. In fact, Collar and his colleagues decided to examine the data now only because the fire had stopped the experiment, at least temporarily.

The fire did not directly affect the experiment, but the CoGeNT team has not been able to examine the detector because of clean-up efforts. The detector may no longer work, or if it does work, it may now have different properties.

"This effect that we're seeing is touch-and-go. It's something where you have to keep the detector exquisitely stable," Collar said. If a single key characteristic of the detector has changed, such as its electronic noise, "We may be unable to look for this modulation with it from now on."

The putative mass of the WIMP particles that CoGeNT possibly has detected ranges from six to 10 billion electron volts, or approximately seven times the mass of a proton. "To look for WIMPs 10 times heavier is hard enough. If they're this light, it becomes a nightmare," Collar said.




Related Links
University of Chicago
Stellar Chemistry, The Universe And All Within It

.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



STELLAR CHEMISTRY
Monash student finds Universe's missing mass
Melbourne, Australia (SPX) May 25, 2011
A Monash student has made a breakthrough in the field of astrophysics, discovering what has until now been described as the Universe's 'missing mass'. Amelia Fraser-McKelvie, working within a team at the Monash School of Physics, conducted a targeted X-ray search for the matter and within just three months found it - or at least some of it. What makes the discovery all the more noteworthy ... read more


STELLAR CHEMISTRY
Northrop Grumman Space Program Completes Critical Review

Satellite Takes 3-Billionth 'Photo'

Japan city to give radiation counters to children

Nokia says Apple to pay royalties, ending patent disputes

STELLAR CHEMISTRY
New military radio unveiled

Indra To Supply Satellite Communications Systems To Brazil's MoD

Lockheed system proves its worth

Intelsat General To Support Armed Forces Radio And Television Service

STELLAR CHEMISTRY
SES-3 Satellite Arrives At Baikonour Launch Base

SpaceX Secures Launch Contract In Major Asian Market

Shipments Of Sea Launch Zenit-3Sl Hardware Resume On Schedule

US Army supports student launch program

STELLAR CHEMISTRY
Helping shape space-based technology policies

Russia plans to launch six Glonass satellites in 2011

India plans to make GPS more accurate with GAGAN

EU to launch Galileo satellites this fall

STELLAR CHEMISTRY
Aircraft systems in the environmental chamber

More flight delays in Australia as ash plays havoc

Aircraft systems tested in the environmental chamber

Hong Kong Airlines plans to place order for A380s

STELLAR CHEMISTRY
Renesas chip supply to recover faster than expected

Quantum knowledge cools computers

New method for creating single crystal arrays of graphene

Two plead guilty in China microchip case: US

STELLAR CHEMISTRY
Landsat Satellite Images Compare Before and After Springfield Tornado

Age of Aquarius Dawns With California Launch

NASA's infrared image of major Hurricane Adrian reveals its stormy life's blood

Canadian Microbolometer Sensor Focusing on Oceans, Fires and Volcanoes

STELLAR CHEMISTRY
Bangladesh shipyards back in business

Rock-climbing garbage collectors clean Rio hills

Medvedev alarmed over tonnes of 'dangerous' waste in Russia

In Kabul, air pollution a bigger killer than war


Memory Foam Mattress Review
Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News
.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement