Space Industry and Business News
TECH SPACE
New chainmail-like material could be the future of armor
illustration only
New chainmail-like material could be the future of armor
by Amanda Morris for Northwestern News
Chicago IL (SPX) Jan 17, 2025

In a remarkable feat of chemistry, a Northwestern University-led research team has developed the first two-dimensional (2D) mechanically interlocked material.

Resembling the interlocking links in chainmail, the nanoscale material exhibits exceptional flexibility and strength. With further work, it holds promise for use in high-performance, light-weight body armor and other uses that demand lightweight, flexible and tough materials.

Publishing on Friday (Jan. 17) in the journal Science, the study marks several firsts for the field. Not only is it the first 2D mechanically interlocked polymer, but the novel material also contains 100 trillion mechanical bonds per 1 square centimeter - the highest density of mechanical bonds ever achieved. The researchers produced this material using a new, highly efficient and scalable polymerization process.

"We made a completely new polymer structure," said Northwestern's William Dichtel, the study's corresponding author. "It's similar to chainmail in that it cannot easily rip because each of the mechanical bonds has a bit of freedom to slide around. If you pull it, it can dissipate the applied force in multiple directions. And if you want to rip it apart, you would have to break it in many, many different places. We are continuing to explore its properties and will probably be studying it for years."

Dichtel is the Robert L. Letsinger Professor of Chemistry at the Weinberg College of Arts and Sciences and a member of the International Institute of Nanotechnology (IIN) and the Paula M. Trienens Institute for Sustainability and Energy. Madison Bardot, a Ph.D. candidate in Dichtel's laboratory and IIN Ryan Fellow, is the study's first author.

Inventing a new process

For years, researchers have attempted to develop mechanically interlocked molecules with polymers but found it near impossible to coax polymers to form mechanical bonds.

To overcome this challenge, Dichtel's team took a whole new approach. They started with X-shaped monomers - which are the building blocks of polymers - and arranged them into a specific, highly ordered crystalline structure. Then, they reacted these crystals with another molecule to create bonds between the molecules within the crystal.

"I give a lot of credit to Madison because she came up with this concept for forming the mechanically interlocked polymer," Dichtel said. "It was a high-risk, high-reward idea where we had to question our assumptions about what types of reactions are possible in molecular crystals."

The resulting crystals comprise layers and layers of 2D interlocked polymer sheets. Within the polymer sheets, the ends of the X-shaped monomers are bonded to the ends of other X-shaped monomers. Then, more monomers are threaded through the gaps in between. Despite its rigid structure, the polymer is surprisingly flexible. Dichtel's team also found that dissolving the polymer in solution caused the layers of interlocked monomers to peel off each other.

"After the polymer is formed, there's not a whole lot holding the structure together," Dichtel said. "So, when we put it in solvent, the crystal dissolves, but each 2D layer holds together. We can manipulate those individual sheets."

To examine the structure at the nanoscale, collaborators at Cornell University, led by Professor David Muller, used cutting-edge electron microscopy techniques. The images revealed the polymer's high degree of crystallinity, confirmed its interlocked structure and indicated its high flexibility.

Dichtel's team also found the new material can be produced in large quantities. Previous polymers containing mechanical bonds typically have been prepared in very small quantities using methods that are unlikely to be scalable. Dichtel's team, on the other hand, made half a kilogram of their new material and assume even larger amounts are possible as their most promising applications emerge.

Adding strength to tough polymers

Inspired by the material's inherent strength, Dichtel's collaborators at Duke University, led by Professor Matthew Becker, added it to Ultem. In the same family as Kevlar, Ultem is an incredibly strong material that can withstand extreme temperatures as well as acidic and caustic chemicals. The researchers developed a composite material of 97.5% Ultem fiber and just 2.5% of the 2D polymer. That small percentage dramatically increased Ultem's overall strength and toughness.

Dichtel envisions his group's new polymer might have a future as a specialty material for light-weight body armor and ballistic fabrics.

"We have a lot more analysis to do, but we can tell that it improves the strength of these composite materials," Dichtel said. "Almost every property we have measured has been exceptional in some way."

Steeped in Northwestern history

The authors dedicated the paper to the memory of former Northwestern chemist Sir Fraser Stoddart, who introduced the concept of mechanical bonds in the 1980s. Ultimately, he elaborated these bonds into molecular machines that switch, rotate, contract and expand in controllable ways. Stoddart, who passed away last month, received the 2016 Nobel Prize in Chemistry for this work.

"Molecules don't just thread themselves through each other on their own, so Fraser developed ingenious ways to template interlocked structures," said Dichtel, who was a postdoctoral researcher in Stoddart's lab at UCLA. "But even these methods have stopped short of being practical enough to use in big molecules like polymers. In our present work, the molecules are held firmly in place in a crystal, which templates the formation of a mechanical bond around each one.

"So, these mechanical bonds have deep tradition at Northwestern, and we are excited to explore their possibilities in ways that have not yet been possible."

Research Report:Mechanically interlocked two-dimensional polymers

Related Links
Northwestern University
Space Technology News - Applications and Research

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TECH SPACE
Researchers develop breakthrough one-step flame retardant for cotton textiles
Bryan TX (SPX) Jan 14, 2025
Although extremely flammable, cotton is one of the most commonly used textiles due to its comfort and breathable nature. However, in a single step, researchers from Texas A and M University can reduce the flammability of cotton using a polyelectrolyte complex coating. The coating can be tailored for various textiles, such as clothing or upholstery, and scaled using the common pad-dry coating process, which is suitable for industrial applications. This technology can help to save property and lives on a ... read more

TECH SPACE
Flexible electronics integrated with paper-thin structure for use in space

Musk bashes Trump-backed AI mega project

Turn on the lights DAVD display helps navy divers navigate undersea conditions

Musk bashes Trump-backed AI mega project

TECH SPACE
Controversy in Italy over potential deal with Musk's SpaceX

Quadsat and NATO NCIA validate Quadsat system for WGS compliance testing

ESA to support development of secure EU communications satellite constellation

IRIS2 contract signed to strengthen Europe's space connectivity and security

TECH SPACE
TECH SPACE
SATELLAI introduces satellite and AI-driven pet wearables

SpaceX launches Space Force Rapid Response Trailblazer

GPS alternative for drone navigation leverages celestial data

Deciphering city navigation AI advances GNSS error detection

TECH SPACE
Company developing supersonic aircraft

French patrol aircraft threatened by Russian military: minister

France, Norway say jet fighter deliveries to Ukraine 'on schedule'

Ex-US Marine pilot fights extradition from Australia to US

TECH SPACE
Physicists measure quantum geometry for the first time

Fast control methods enable record-setting fidelity in superconducting qubit

Mizzou scientists leverage layered crystals for next-gen energy solutions

Advancing DNA quantum computing with electric field gradients and nuclear spins

TECH SPACE
NASA grant awarded to enhance AI-driven satellite weather forecasting

Transforming earth observation data into water security solutions for Africa

Technology for oxidizing atmospheric methane won't help the climate

Planet expands high-resolution imaging with Pelican-2 and SuperDoves

TECH SPACE
Nepal's top court bars infrastructure in protected areas

Spain busts network illegally importing Italian waste

Oil spill reaches Ukraine's Zaporizhzhia region: official

Heavy fuel oil makes Black Sea spill hard to clean up

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.