Space Industry and Business News  
TECH SPACE
New algorithm predicts optimal materials among all possible compounds
by Staff Writers
Moscow, Russia (SPX) May 18, 2020

The results of a Mendelevian Search for hard and superhard materials

Skoltech researchers have offered a solution to the problem of searching for materials with required properties among all possible combinations of chemical elements. These combinations are virtually endless, and each has an infinite multitude of possible crystal structures; it is not feasible to test them all and choose the best option (for instance, the hardest compound) either in an experiment or in silico.

The computational method developed by Skoltech professor Artem R. Oganov and his PhD student Zahed Allahyari solves this major problem of theoretical materials science. Oganov and Allahyari presented their method in the MendS code (stands for Mendelevian Search) and tested it on superhard and magnetic materials.

"In 2006, we developed an algorithm that can predict the crystal structure of a given fixed combination of chemical elements. Then we increased its predictive powers by teaching it to work without a specific combination - so one calculation would give you all stable compounds of given elements and their respective crystal structures.

The new method tackles a much more ambitious task: here, we pick neither a precise compound nor even specific chemical elements - rather, we search through all possible combinations of all chemical elements, taking into account all possible crystal structures, and find those that have the needed properties (e.g., highest hardness or highest magnetization)" says Artem Oganov, Skoltech and MIPT professor, Fellow of the Royal Society of Chemistry and a member of Academia Europaea.

The researchers first figured out that it was possible to build an abstract chemical space so that compounds that would be close to each other in this space would have similar properties. Thus, all materials with peculiar properties (for example, superhard materials) will be clustered in certain areas, and evolutionary algorithms will be particularly effective for finding the best material.

The Mendelevian Search algorithm runs through a double evolutionary search: for each point in the chemical space, it looks for the best crystal structure, and at the same time these found compounds compete against each other, mate and mutate in a natural selection of the best one.

To test the efficacy of the new method, scientists gave their machine a task to find the composition and structure of the hardest material. Their algorithm returned diamond, which makes pursuits for materials harder than diamond a dead end. Moreover, the algorithm also predicted several dozen hard and superhard phases, including most of the already known materials and several completely new ones.

This method can speed up the search for record-breaking materials and usher in new technological breakthroughs. Equipped with these materials, scientists can create brand new technologies or increase the efficiency and availability of old ones.

Research paper


Related Links
Skolkovo Institute Of Science And Technology (SKOLTECH)
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Liquid metal research invokes 'Terminator' film - but much friendlier
Binghamton NY (SPX) May 06, 2020
Pu Zhang likes to compare his team's research on liquid metals to the Terminator - specifically 1991's Terminator 2: Judgment Day, in which a killer robot sent from a grim future can transform into anyone and anything in pursuit of its human prey. When told maybe that's not the best comparison, Zhang laughed and made a confession: "To be honest, I've never watched that movie!" Zhang - an assistant professor of mechanical engineering at Binghamton University, State University of New York - has much ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Ultra-long-working-distance spectroscopy with 3D-printed aspherical microlenses

China tests 3D printing in space for first time

Liquid metal research invokes 'Terminator' film - but much friendlier

German 3D printing buffs pitch in with virus-fighting network

TECH SPACE
Northrop Grumman to rapidly develop net-centric gateway

Dominate the electromagnetic spectrum

L3Harris Technologies awarded third LRIP order on US Army's HMS Manpack IDIQ contract

Lockheed Martin's new contract with DARPA can disrupt the future of space

TECH SPACE
TECH SPACE
Velodyne Lidar announces multi-year sales agreement with GeoSLAM

Galileo positioning aiding Covid-19 reaction

GPS celebrates 25th year of operation

Galileo Green Lane, easing pressure at the EU's internal borders

TECH SPACE
Virgin Group to sell shares of space venture to aid travel business

US approves helicopters to Egypt but says rights concerns remain

Croatia defence minister quits after deadly plane crash

Raytheon awarded $325M for repair of ATFLIR system for Navy Super Hornets

TECH SPACE
Taiwan chip giant TSMC to build $12bn US plant

Atomically thin magnets for next generation spin and quantum electronics

A closer look at superconductors

Army researchers see path to quantum computing at room temperature

TECH SPACE
Common CFC replacements break down into persistent pollutants

Cold air rises - what that means for Earth's climate

Wetter climate to trigger global warming feedback loop in the tropics

Russia to launch first satellite for monitoring Arctic climate this year

TECH SPACE
Italy expected to delay tax on plastic until 2021: report

China smog returns after pandemic cleared the air

Stars and scientists call for world not to 'go back to normal'

Scientists find highest ever level of microplastics on seafloor









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.