Space Industry and Business News  
EARTH OBSERVATION
New Space-Based Weather Instruments Start Gathering Data
by Carol Rasmussen for NASA News
Pasadena CA (JPL) Feb 09, 2022

Climate Science at NASA

After being installed on the International Space Station, two small instruments designed and built at NASA's Jet Propulsion Laboratory in Southern California were powered up Jan. 7 and began collecting data on Earth's ocean winds and atmospheric water vapor - critical information required for weather and marine forecasts. Within two days, the Compact Ocean Wind Vector Radiometer (COWVR) and Temporal Experiment for Storms and Tropical Systems (TEMPEST) instruments had gathered enough data to begin producing maps.

COWVR and TEMPEST launched on Dec. 21, 2021, with SpaceX's 24th commercial resupply mission for NASA. Both instruments are microwave radiometers, measuring variations in natural microwave emissions from Earth. Part of the U.S. Space Force's Space Test Program-Houston 8 (STP-H8), the instruments were designed to demonstrate that they can collect data comparable in quality to the larger instruments currently operating in orbit.

This new map from COWVR shows microwave emissions from Earth at 34 gigahertz through all latitudes visible to the space station (52 degrees north to 52 degrees south). This particular microwave frequency provides weather forecasters information on the strength of winds at the ocean surface, the amount of water in clouds, and the amount of water vapor in the atmosphere.

Green and white on the map indicate higher water vapor and clouds, while dark blue over the ocean indicates drier air and clear sky. The image captures typical weather patterns, such as tropical moisture and rain (the green band stretching across center of map) and mid-latitude storms moving across the ocean.

"We're off to a great start," said Shannon Brown, the JPL technologist who designed the COWVR instrument. "Seeing this quality of data so early into the mission sets the stage for very exciting things to come."

COWVR is a complete rethinking of a classic instrument design, while TEMPEST is the product of a long advance toward miniaturizing instrument components. If they continue to prove successful, they will crack open the door to a new era where lower-cost satellites complement the existing weather satellite fleet.

How the Instruments Work
Radiometers need an antenna that rotates so that they can observe a wide swath of Earth's surface instead of just a narrow line. In all other spaceborne microwave radiometers, not only the antenna but also the radiometer itself and the companion electronics rotate about 30 times a minute. There are good scientific and engineering reasons for a design with so many spinning parts, but it's a challenge to keep a spacecraft stable when there's that much moving mass. Also, the mechanism that passes power and data between the spinning and the stationary sides of the instrument has proved to be time-consuming and difficult to build.

Weighing about 130 pounds (57.8 kilograms), COWVR has less than one-fifth the mass of the microwave radiometer used by the U.S. military to measure ocean winds. Less than one-third of its mass rotates. To avoid the need for a separate mechanism that transfers power and data from the spinning to the stable parts, Brown mounted everything that has to spin on a turntable.

He and his team enabled other design innovations by increasing the complexity of the data processing required - in other words, finding software solutions to hardware challenges. For example, the team replaced a part of the instrument called a "warm target," used to calibrate the radiometer's polarization measurements, with a noise source that generates known polarized signals. When the calibration is complete, these known signals can be removed like any other noise in a data transmission.

COWVR's companion instrument, TEMPEST, is the product of decades of NASA investment in technology to make space-bound electronics more compact. In the mid-2010s, JPL engineer Sharmila Padmanabhan pondered what scientific goals could be accomplished by packaging a compact sensor in a CubeSat - a type of very small satellite often used for testing new design concepts inexpensively. "We said, 'Hey, if we can actually manage to compactly package a sensor inside a CubeSat, we can get measurements of clouds, convection, and precipitation over time,'" Padmanabhan remembered. Those measurements would provide more insight into how storms grow.

Padmanabhan's design was first tried out in space from 2018 to last June. That CubeSat, known as TEMPEST-D ("D" for "demonstration"), measured water vapor in the atmosphere and captured images of many major hurricanes and storms. The newly deployed TEMPEST is about the size of a large cereal box and weighs less than 3 pounds (1.3 kilograms), with an antenna about 6 inches (15 centimeters) in diameter.

The antenna size dictates that TEMPEST can best observe only the shortest microwave wavelengths sensitive to water vapor - about 10 times shorter than the ones COWVR senses. A smaller antenna "matches" short wavelengths better, similar to the way the short air column of a flute is suitable for short wavelengths of sound (high notes), while the long air column of a tuba is better for the long wavelengths of low notes.

COWVR and TEMPEST's combined data provides most of the same measurements available from large microwave radiometers used for weather observations. The instruments were funded by the U.S. Space Force and Navy, but users from other agencies, universities, and branches of the military are also interested. These scientists are already working on mission concepts that would take advantage of the new low-cost microwave sensor technologies to study long-standing questions such as how heat from the ocean fuels global weather patterns.


Related Links
This new map, made using COWVR's new observations, shows Earth's microwave emissions at a frequency that provides information on the strength of winds at the ocean surface, the amount of water in clouds, and the amount of water vapor in the atmosphere. Credit: NASA/JPL-Caltech Earth Observation News - Suppiliers, Technology and Application


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


EARTH OBSERVATION
Punxsutawney Phil predicts six more weeks of winter in US
Washington (AFP) Feb 2, 2022
Don't put away those coats and mittens just yet, America. Punxsutawney Phil, the world's furriest weather forecaster, is predicting six more weeks of winter. In an annual February 2 tradition, the groundhog emerged from winter hibernation in his burrow in Punxsutawney, Pennsylvania, on Wednesday to test the weather. According to his handlers at the Punxsutawney Groundhog Club, established in 1887, the rodent saw his shadow and scurried back inside, auguring six more weeks of winter. No shado ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
Rocket set to hit Moon was built by China, not SpaceX, say astronomers

Coca-Cola says 25% of packaging will be reusable by 2030

A new way to shape a material's atomic structure with ultrafast laser light

Brazil launches plan to expand mining in Amazon

EARTH OBSERVATION
Raytheon Intelligence and Space completes Next Gen OPIR GEO Block 0 Milestone

Northrop Grumman and Kratos Demonstration Brings JADC2 Connectivity to Life

DARPA researchers use light on chip to drive next-generation RF Platforms

Teaming up to deliver a new Airborne ISR SATCOM capability for MilGov Operators

EARTH OBSERVATION
EARTH OBSERVATION
The drone has landed

China completes health check on BDS satellite constellation

Providing GPS-quality timing accuracy without GPS

Arianespace to launch eight new Galileo satellites

EARTH OBSERVATION
Quarterly AFTC-AFRL Summit aims to get warfighters "ready to go fast"

Fuyo Lease Group announces investment in Bye Aerospace

UCF to lead $10m NASA project to develop zero-carbon jet engines

Danish jets arrive in Lithuania amid regional tensions

EARTH OBSERVATION
Quantum tech in space?

Construction contract awarded for new semiconductor facility at MIT Lincoln Laboratory

Mapping the quantum future with smart TV technology

Toshiba sets March date for vote on spin-off plan

EARTH OBSERVATION
New Space-Based Weather Instruments Start Gathering Data

Magellan Aerospace to supply subsystems for CHORUS EO Satellite

Spire Global completes acquisition of exactEarth

New "vertical map" of airborne microorganisms indicates how global warming will impact global ecosystems

EARTH OBSERVATION
Sweden mine would endanger indigenous lands: UN expert

Tunisia to return illegally imported waste to Italy

Pollution clean-up aims to create Gaza's first nature reserve

World must work together to tackle plastic ocean threat: WWF









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.