Subscribe free to our newsletters via your
. Space Industry and Business News .




STELLAR CHEMISTRY
New Milky Way maps help solve stubborn interstellar material mystery
by Staff Writers
Baltimore MD (SPX) Aug 18, 2014


The resulting maps showed the intriguing result that the complex molecules thought to be responsible for the DIBs are distributed differently than another known component of the interstellar medium - the solid particles known as dust - also traced by the RAVE survey.

An international team of sky scholars, including a key researcher from Johns Hopkins, has produced new maps of the material located between the stars in the Milky Way. The results should move astronomers closer to cracking a stardust puzzle that has vexed them for nearly a century.

The maps and an accompanying journal article appear in the journal Science. The researchers say their work demonstrates a new way of uncovering the location and eventually the composition of the interstellar medium-the material found in the vast expanse between star systems within a galaxy.

This material includes dust and gas composed of atoms and molecules that are left behind when a star dies. The material also supplies the building blocks for new stars and planets.

"There's an old saying that 'We are all stardust,' since all chemical elements heavier than helium are produced in stars," said Rosemary Wyse, a Johns Hopkins professor of physics and astronomy who played a prominent role in the research and helped shape the Science paper. "But we still don't know why stars form where they do. This study is giving us new clues about the interstellar medium out of which the stars form."

In particular, the researchers focused on a mysterious feature in the light from stars, a peculiarity called diffuse interstellar bands, or "DIBS." A graduate student who photographed the light from distant stars discovered these dark bands in 1922.

Analyzing rainbow-colored bands of starlight that have passed through space gives astronomers important information about the makeup of the space materials that the light has encountered. But in 1922, the grad student's photographs yielded some dark lines indicating that some starlight was "missing'' and that something in the interstellar medium between Earth and the star was absorbing the light.

Since then, scientists have identified more than 400 of these diffuse interstellar bands, but the materials that cause the bands to appear and their precise location have remained a mystery.

Researchers have speculated that the absorption of starlight that creates these dark bands points to the presence of unusually large complex molecules, but proof of this has remained elusive. The nature of this puzzling material is important to astronomers because it could provide clues about the physical conditions and chemistry of these regions between stars. Such details serve as critical components in theories as to how stars and galaxies are formed.

Wyse said more concrete clues should emerge from the new pseudo-3D maps of the DIB-material within our Milky Way Galaxy, maps that were produced by the 23 scientists who contributed to the Science article.

The maps were assembled from data collected over a 10-year period by the Radial Velocity Experiment, also known as RAVE. This project used the UK Schmidt Telescope in Australia to collect spectroscopic information from the light of as many as 150 stars at once.

The maps are described as "pseudo-3D" because a specific mathematical form was assumed for the distribution in the vertical dimension that provides the distances from the plane of the Milky Way, with the maps presented in the remaining two dimensions.

Wyse, who is on the executive board of the RAVE project, said the survey supplied the mapmakers with data related to 500,000 stars. The vast size of the sample enabled the mapmakers to determine the distances of the material that causes the DIBs and thus how the material is distributed throughout the Milky Way Galaxy.

The resulting maps showed the intriguing result that the complex molecules thought to be responsible for the DIBs are distributed differently than another known component of the interstellar medium - the solid particles known as dust - also traced by the RAVE survey.

Future studies can use the techniques outlined in the new paper to assemble other maps that should further solve the mysteries surrounding where DIBS are located and what materials cause them. "To figure out what something is, you first have to figure out where it is," Wyse said, "and that's what this paper does. Larger surveys will provide more details in the future. This paper has demonstrated how to do that."

.


Related Links
Johns Hopkins University
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Stardust Team Reports Discovery of First Potential Interstellar Particles
Washington DC (SPX) Aug 15, 2014
Seven rare, microscopic interstellar dust particles that date to the beginnings of the solar system are among the samples collected by scientists who have been studying the payload from NASA's Stardust spacecraft since its return to Earth in 2006. If confirmed, these particles would be the first samples of contemporary interstellar dust. A team of scientists has been combing through the sp ... read more


STELLAR CHEMISTRY
Robotic-assisted imaging will help in daily hospital practice

The Future of CubeSats

Lockheed taps GenDyn unit for Space Fence ground equipment structures

New F-16 configuration features AESA radar

STELLAR CHEMISTRY
General Hyten takes control of AFSPC

3 SOPS bids farewell to oldest DSCS satellite

Next gen satellite to be tested during Arctic Shield 2014

Saudis seek to upgrade AWAC planes

STELLAR CHEMISTRY
Aerojet Rocketdyne Supports Fifth Successful Launch in Six Weeks

Optus 10 delivered to French Guiana for Ariane 5 Sept launch

SpaceX to build world's first commercial rocket launch site in south Texas

Ariane 5 is readied for Arianespace's September launch with MEASAT-3b and Optus 10

STELLAR CHEMISTRY
Twin Galileos meet, ready for Thursday's launch

Arianespace Soyuz ready to launch European GPS satellites

First operational Galileo GPS satellites integrated for Soyuz launch

Payload Integration Begins For Next Arianespace Soyuz Galileo Launch

STELLAR CHEMISTRY
Northrop Grumman Developing XS-1 Spaceplane For DARPA

Flight Test Preparations Draw on Launch Services Program's Expertise

Airborne Systems supplying decoys to New Zealand

Bodies of two pilots found after fighter jets crash in Italy

STELLAR CHEMISTRY
Can our computers continue to get smaller and more powerful?

Electrical engineers take major step toward photonic circuits

'Cavity protection effect' helps to conserve quantum information

Could hemp nanosheets topple graphene for making the ideal supercapacitor?

STELLAR CHEMISTRY
NMR Using Earth's Magnetic Field

How much do climate patterns influence predictability across the United States?

NOAA analysis reveals significant land cover changes in US coastal regions

DigitalGlobe Announces Launch of WorldView-3

STELLAR CHEMISTRY
Mexico closes 80 schools after chemical leak

Mexico acid leak leaves orange river, toxic water

India's top court raps Modi government over filthy Ganges

Physicists create water tractor beam




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.