Space Industry and Business News  
TIME AND SPACE
New Measurement of Cosmic Expansion Rate Is "Stuck in the Middle"
by Staff Writers
Washington DC (SPX) Jul 17, 2019

file image

A team of collaborators from Carnegie and the University of Chicago used red giant stars that were observed by the Hubble Space Telescope to make an entirely new measurement of how fast the universe is expanding, throwing their hats into the ring of a hotly contested debate. Their result - which falls squarely between the two previous, competing values - is published in The Astrophysical Journal.

Nearly a century ago, Carnegie astronomer Edwin Hubble discovered that the universe has been growing continuously since it exploded into being during the Big Bang. But precisely how fast it's moving - a value termed the Hubble constant in his honor - has remained stubbornly elusive.

The Hubble constant helped scientists sketch out the universe's history and structure and an accurate measurement of it might reveal any flaws in this prevailing model.

"The Hubble constant is the cosmological parameter that sets the absolute scale, size, and age of the universe; it is one of the most direct ways we have of quantifying how the universe evolves," said lead author Wendy Freedman of the University of Chicago, who began this work at Carnegie.

Until now, there have been two primary tools used to measure the universe's rate of expansion. Unfortunately, their results don't agree and the tension between the two numbers has persisted even as each side makes increasingly precise readings. However, is possible that the difference between the two values is due to systemic inaccuracies in one or both methods, spurring the research team to develop their new technique.

One method, pioneered at Carnegie, uses stars called Cepheids, which pulsate at regular intervals. Because the rate at which they pulse is known to be related to their intrinsic brightness, astronomers can use their luminosities and the period between pulses to measure their distances from Earth.

"From afar two bells may well appear to be the same, listening to their tones can reveal that one is actually much larger and more distant, and the other is smaller and closer," explained Carnegie's Barry Madore, one of the paper's co-authors. "Likewise, comparing how bright distant Cepheids appear to be against the brightness of nearby Cepheids enables us to determine how far away each of the stars' host galaxies are from Earth."

When a celestial object's distance is known, a measurement of the speed at which it is moving away from us reveals the universe's rate of expansion. The ratio of these two figures - the velocity divided by the distance - is the Hubble constant.

The second method uses the afterglow left over from the Big Bang. Called cosmic background radiation, it is the oldest light we can see. Patterns of compression in the thick, soupy plasma of which the baby universe was comprised can still be seen and mapped as slight temperature variations. These ripples, documenting the universe's first few moments, can be run forward in time through a model and used to predict the present-day Hubble constant.

The former technique says the expansion rate of the universe is 74.0 kilometers per second per megaparsec; the latter says it's 67.4. If it's real, the discrepancy could herald new physics.

Enter the third option.
The Carnegie-Chicago Hubble Program, led by Freedman and including Carnegie astronomers Madore, Christopher Burns, Mark Phillips, Jeff Rich, and Mark Seibert - as well as Carnegie-Princeton fellow Rachael Beaton - developed a new way to calculate the Hubble constant.

Their technique is based on a very luminous class of stars called red giants. At a certain point in their lifecycles, the helium in these stars is ignited, and their structures are rearranged by this new source of energy in their cores.

"Just as the cry of a loon is instantly recognizable among bird calls, the peak brightness of a red giant in this state is easily differentiated," Madore explained. "This makes them excellent standard candles."

The team made use of the Hubble Space Telescope's sensitive cameras to search for red giants in nearby galaxies.

"Think of it as scanning a crowd to identify the tallest person - that's like the brightest red giant experiencing a helium flash," said Burns. "If you lived in a world where you knew that the tallest person in any room would be that exact same height - as we assume that the brightest red giant's peak brightness is the same - you could use that information to tell you how far away the tallest person is from you in any given crowd."

Once the distances to these newly found red giants are known, the Hubble constant can be calculated with the help of another standard candle - Type Ia supernovae - to diminish the uncertainty caused by the red giants' relative proximity to us and extend our reach out into the more-distant Hubble flow.

According to the red giant method the universe's expansion rate is 69.8 - falling provocatively between the two previously determined numbers.

"We're like that old song, 'Stuck in the Middle with You,'" joked Madore. "Is there a crisis in cosmology? We'd hoped to be a tiebreaker, but for now the answer is: not so fast. The question of whether the standard model of the universe is complete or not remains to be answered."

Research Report: "The Carnegie-Chicago Hubble Program. VIII. An Independent Determination of the Hubble Constant Based on the Tip of the Red Giant Branch,"


Related Links
Carnegie Institution For Science
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
The first AI universe sim is fast and accurate - and its creators don't know how it works
New York NY (SPX) Jun 28, 2019
For the first time, astrophysicists have used artificial intelligence techniques to generate complex 3D simulations of the universe. The results are so fast, accurate and robust that even the creators aren't sure how it all works. "We can run these simulations in a few milliseconds, while other 'fast' simulations take a couple of minutes," says study co-author Shirley Ho, a group leader at the Flatiron Institute's Center for Computational Astrophysics in New York City and an adjunct professor at C ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Molecular thumb drives: Researchers store digital images in metabolite molecules

NASA funds demo of 3D-Printed spacecraft parts made, assembled in orbit

BAE nets $4.7M by DARPA to integrate machine learning into RF signals detection

Perseverance is key to NASA's advancement of alloys for bearings and gears

TIME AND SPACE
Newly established US Space Agency offers sneak peek at satellite layout

AEHF-5 encapsulated and prepared for launch

Corps begins fielding mobile satellite communication system

AFRL demonstrates world's first daytime free-space quantum communication enabled by adaptive optics

TIME AND SPACE
TIME AND SPACE
Second Lockheed Martin-Built GPS III Satellite Ready for July 25 Liftoff

Europe's GPS rival Galileo suffers outage

Planes landing in Israel see GPS signals disrupted

NASA Eyes GPS at the Moon for Artemis Missions

TIME AND SPACE
Lockheed to keep Sikorsky helicopter plant open in Pennsylvania

Bulgaria to acquire eight F-16 fighter planes in $1.25B deal

Lockheed awarded $21.5M for tooling, retrofits on F-35s

$600M helicopter sale to Greece approved by State Department

TIME AND SPACE
Will your future computer be made using bacteria

On the way to printable organic light emitting diodes

'Tsunami' on a silicon chip: a world first for light waves

Atomic 'patchwork' using heteroepitaxy for next generation semiconductor devices

TIME AND SPACE
Animal observation system ICARUS is switched on

Scientists discover the biggest seaweed bloom in the world

Winter monsoons became stronger during geomagnetic reversal

First new DoD NEXRAD weather radar installed at Cannon Air Force Base

TIME AND SPACE
Shanghai leads battle against China's rising mountain of trash

Eternally stinky city? Rome garbage crisis sparks health fears

Tourist rush at Australia's Uluru before climb ban

Light pollution puts Nemo's offspring at risk









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.