Space Industry and Business News  
STELLAR CHEMISTRY
New Evidence For Supernova-Driven Galactic Fountains In Milky Way

This illustration of the Milky Way shows the galactic fountain scenario: supernova explosions in the galactic disc heat the interstellar medium and can drive hot gas out of the disc, creating so-called galactic fountains that contribute to the formation of a halo of hot gas around the Milky Way. As the gas rises above and below the disc, reaching heights of a few kiloparsecs, it emits radiation and thus becomes cooler, condensing into clouds which then fall back into the disc, in a fashion that resembles a fountain.

The fountains shown in this illustration are purely indicative, as the number of fountains actually present in the Milky Way is not well known. In this illustration the approximate scale of the galactic fountains is compared to the size of the Galaxy; the approximate location of the Sun is also indicated. Distances are given in kiloparsec (kpc). Copyright: ESA
by Staff Writers
Paris, France (ESA) Nov 22, 2010
Observing the X-ray-bright gas in the halo of the Milky Way, ESA's XMM-Newton has gathered new data which favour a process involving fountains of hot gas in our Galaxy.

Such a scenario, with the gas flowing from the galactic disc into the halo where it then condenses into cooler clouds and subsequently falls back to the disc, confirms the importance of supernova explosions in forging the evolution of the interstellar medium and of the entire Galaxy.

The interstellar medium (ISM) in the Milky Way is a complex, dynamical system consisting of gas in different phases, spanning a wide range of densities and temperatures. The interplay among the various phases in the ISM, namely the hot, warm and cold gas, determines the entire history of star formation in our Galaxy, by shaping the birthplaces of stars.

The most massive stars, in particular, have a deep influence on the ISM, as they release copious amounts of energy both during their lives and with their eventual dramatic demises in the form of supernova explosions. Understanding the structure and dynamics of the ISM is a key element in figuring out the processes of star formation in the Galaxy, and of the evolution of spiral galaxies in general.

One phase of the ISM, the hot gas, has very low densities (below 0.01 cm-3) and temperatures as high as a few million Kelvin, hence it is hot enough to emit X-rays.

The existence of the hot component of the ISM was first proposed in the 1970s, not long after the new spectral window of X-ray astronomy opened; since then, it has become clear that the hot phase represents an important component of the ISM, as it most directly traces the injection of energy into the ISM from stars and supernovae.

Supernova explosions heating the ISM can drive hot gas out of the disc in so-called galactic fountains, forming a halo of hot gas around the Milky Way.

Such a halo was first detected by the ROSAT X-ray telescope in the early 1990s, and similar halos have also been detected around other spiral galaxies. In the galactic fountain scenario, as the gas rises above and below the disc, reaching heights of a few kiloparsecs, it emits radiation and thus becomes cooler.

This cooled gas starts to condense into clouds which then fall back into the disc, in a fashion that resembles a fountain: this creates a global circulation of gas in the Galaxy which dynamically connects the disc and the halo.

Radio observations of hydrogen gas in our Galaxy show structures that are thought to be superbubbles bursting out of the disc, giving rise to galactic fountains. However, we cannot see the hot gas rising into the halo in these structures, because the X-rays from this hot gas are absorbed by intervening material in the disc.

"Although we cannot directly observe the hot gas rising out of the disc, it has long been suspected that galactic fountains are responsible for the hot gas observed in the Milky Way's halo," explains David Henley from the University of Georgia, in the US, who led a study that provides new evidence supporting a galactic fountain mechanism in our Galaxy.

"We have taken spectra of the X-ray-emitting hot gas in the galactic halo and compared them to detailed predictions coming from different models. The galactic fountain scenario turned out to be the one that best describes our data," he adds.

The study relies on a series of spectroscopic observations performed with ESA's X-ray observatory, XMM-Newton, targeting the emission from gas in the galactic halo, which is dominated by highly ionised oxygen atoms in the XMM-Newton energy band.

Henley and collaborators compared the data to predictions from three different models that have been put forward to explain the origin of the hot gas in the halo: in one case, the hot gas is accreted from extragalactic material; another model accounts for the heating of the halo gas in terms of individual supernova explosions taking place in the halo itself; finally, a third model relies on supernovae powering the turbulent dynamics of the ISM and producing, among other features, galactic fountains.

"The high-quality spectra collected by XMM-Newton were essential in discriminating between the various models, pointing towards the significant contribution of supernova-driven galactic fountains to the X-ray emission of the galactic halo," comments Norbert Schartel, XMM-Newton Project Scientist.

This result shows that galactic fountains are a major player in the mixing and distribution of gas in the ISM, thus confirming previous clues about the crucial role of supernovae in the global evolution of the Milky Way.

"There are still some open issues but we feel a step closer to answering the question of the origin of the hot halo gas. Further observations, expanding the extent of the current survey, as well as more detailed simulations on the theoretical front will surely shed new light on this issue," Henley concludes.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
ESA XMM-Newton
Stellar Chemistry, The Universe And All Within It



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


STELLAR CHEMISTRY
The Enigma Of The Missing Stars In Space May Be Solved
Bonn, Germany (SPX) Nov 19, 2010
New stars are born in the Universe around the clock - on the Milky Way, currently about ten per year. From the birth rate in the past, we can generally calculate how populated space should actually be. But the problem is that the results of such calculations do not match our actual observations. "There should actually be a lot more stars that we can see," says Dr. Jan Pflamm-Altenburg, ast ... read more







STELLAR CHEMISTRY
Apple releases updated operating system update for iPad

Stanford Students Fly In Zero Gravity To Protect Satellites From Tiny Meteoroids

Russia 'gives Iran top new radar'

Thales announces venture for Chinese in-flight systems

STELLAR CHEMISTRY
Codan Receives JITC Certification For 2110 HF Manpack

Northrop Grumman Bids for Marine Corps Common Aviation CnC

DSP Satellite System Celebrates 40 Years

ManTech Awarded US Army Contract To Provide ECCS In Afghanistan

STELLAR CHEMISTRY
45th Space Wing Launches NRO Satellite

Ball Aerospace STPSat-2 Satellite Launches Aboard STP-S26 Mission

Resourcesat-2 Satellite Launch In January

Ukraine Delivers Taurus II Launch Vehicle's First Stage To US

STELLAR CHEMISTRY
New Simulator Offers Ability To Record And Replay GLONASS And GPS

Russia To Launch New Generation Satellite In 2013

SkyTraq Introduces New GLONASS/GPS Receiver

SES To Contribute To Galileo Operations

STELLAR CHEMISTRY
'Very rare' oxygen bottle blast holed Qantas jet: probe

India approves new airport for Mumbai

Airbus CEO takes dive as A380 has issues

Air China announces 4.49 billion-dollar Airbus deal

STELLAR CHEMISTRY
Chaogates Hold Promise For The Semiconductor Industry

Caltech Physicists Demonstrate A Four-Fold Quantum Memory

Building A Racetrack Memory

Microsoft sues Motorola over 'excessive' royalty demands

STELLAR CHEMISTRY
ESA's Ice Mission Goes Live

Hyperion Hyperspectral Imager Marks Tenth Anniversary On-Orbit

Redrawing Our Borders

Climate Change On The Go

STELLAR CHEMISTRY
EU team in Naples for garbage crisis as health risks rise

A Technology Solution To Hungarian Disaster Relief With DeconGel

Hungary promises full compensation for toxic mud victims

Victims of Hungarian toxic spill to hold off protest


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement