Space Industry and Business News  
New Catalysts May Create More, Cheaper Hydrogen

-
by Staff Writers
Argonne IL (SPX) Aug 22, 2007
A new class of catalysts created at the U.S. Department of Energy's Argonne National Laboratory may help scientists and engineers overcome some of the hurdles that have inhibited the production of hydrogen for use in fuel cells.

Argonne chemist Michael Krumpelt and his colleagues in Argonne's Chemical Engineering Division used "single-site" catalysts based on ceria or lanthanum chromite doped with either platinum or ruthenium to boost hydrogen production at lower temperatures during reforming. "We've made significant progress in bringing the rate of reaction to where applications require it to be," Krumpelt said.

Most hydrogen produced industrially is created through steam reforming. In this process, a nickel-based catalyst is used to react natural gas with steam to produce pure hydrogen and carbon dioxide.

These nickel catalysts typically consist of metal grains tens of thousands of atoms in diameter that speckle the surface of metal oxide substrates. Conversely, the new catalysts that Krumpelt developed consist of single atomic sites imbedded in an oxide matrix.

The difference is akin to that between a yard strewn with several large snowballs and one covered by a dusting of flakes. Because some reforming processes tend to clog much of the larger catalysts with carbon or sulfur byproducts, smaller catalysts process the fuel much more efficiently and can produce more hydrogen at lower temperatures.

Krumpelt's initial experiments with single-site catalysts used platinum in gadolinium-doped ceria that, though it started to reform hydrocarbons at temperatures as low as 450 degrees Celsius, became unstable at higher temperatures. As he searched for more robust materials that would support the oxidation-reduction reaction cycle at the heart of hydrocarbon reforming, Krumpelt found that if he used ruthenium - which costs only one percent as much as platinum - in a perovskite matrix, then he could initiate reforming at 450 degrees Celsius and still have good thermal stability.

The use of the LaCrRuO3 perovskite offers an additional advantage over traditional catalysts. While sulfur species in the fuel degraded the traditional nickel, and to a lesser extent even the single-site platinum catalysts, the crystalline structure of the perovskite lattice acts as a stable shell that protects the ruthenium catalyst from deactivation by sulfur.

Related Links
Argonne National Laboratory
Powering The World in the 21st Century at Energy-Daily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Pellets Of Power Designed To Deliver Hydrogen To Future Cars
Boston MA (SPX) Aug 22, 2007
Hydrogen may prove to be the fuel of the future in powering the effi cient, eco-friendly fuel cell vehicles of tomorrow. Developing a method to safely store, dispense and easily "refuel" the vehicle's storage material with hydrogen has baffl ed researchers for years. However, a new and attractive storage medium being developed by Pacific Northwest National Laboratory scientists may provide the "power of pellets" to fuel future transportation needs.







  • Broadband revolutionizes education on remote Maldives atolls
  • NKorea to get Internet code
  • Satellite Multimedia For Mobile Phones
  • Vizada Launches SkyFile Access For Better Mobile Satellite Data Transfer

  • India To Launch INSAT-4CR From Sriharikota On Sept 01
  • Ariane 5 - Third Dual-Payload Launch Of 2007
  • Lockheed Martin Marks 33rd Consecutive A2100 Success With The Launch Of BSAT-3A
  • ILS to Launch Inmarsat Satellite On Proton Vehicle Next Spring

  • Indonesia to buy six Sukhoi jets: Russia
  • China Southern intending to buy 55 Boeing 737 aircraft
  • Russia To Build Over 4,500 Aircraft By 2025
  • Boeing Flies Blended Wing Body Research Aircraft

  • Northrop Grumman Showcases Information-Enabled Joint Warfighting Capabilities At LandWarNet Conference
  • Antenna Wings For Advanced EHF Communications Satellite Delivered To Integrator
  • Russian Armed Forces To Adopt New Communications System By 2015
  • Empire Challenge 07 Tests Emerging Intelligence, Surveillance and Reconnaissance Concepts

  • Sharp develops super-thin LCD TV
  • Boeing-Built Spaceway 3 Satellite Operational After Launch
  • ATK To Build Satellite Link Signal Generator With Sandia National Laboratories
  • Purdue Milestone A Step Toward Advanced Sensors And Communications

  • Northrop Grumman Appoints James Myers VP And GM Of Navigation Systems Division
  • Senior Official Of Energia Space Appointed President
  • New SIDC Commander Has The Wright Stuff
  • NASA Administrator Names Ryschkewitsch As New Chief Engineer

  • China Develops Beidou Satellite Monitoring System
  • DigitalGlobe Announces Launch Date For WorldView-1
  • Radar reveals vast medieval Cambodian city: study
  • Satellite Tracking Will Help Answer Questions About Penguin Travels

  • Galileo To Support Global Search And Rescue
  • Car Satellite Navigation Systems Can Be Steered The Wrong Way
  • ShoZu One-Click Image Upload Service To Be Embedded In Samsung Handsets
  • T-Mobile Austria Customers Can Now Avoid Becoming Lost With GPS SatNav From TeleNav

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement