Subscribe free to our newsletters via your
. Space Industry and Business News .




CIVIL NUCLEAR
Neutrons find 'missing' magnetism of plutonium
by Staff Writers
Oak Ridge TN (SPX) Jul 14, 2015


This is an artist impression of the valence-fluctuating ground state of plutonium. Due to strong interactions between the itinerant conduction electrons (denoted in purple) and the localized valence electrons in plutonium, its electronic ground state fluctuates (center panel) between three distinct electronic configurations (shown on top) that contain 4 (5f4), 5 (5f5) and 6 (5f6) 5f electrons, respectively. Because the 5f4 and, 5f5 valence configurations exhibits a magnetic moment (denoted by the arrows), whereas the 5f6 is nonmagnetic, the valence fluctuations simultaneously drive magnetic fluctuations, demonstrating that the magnetism in plutonium is not "missing" but dynamic. Image courtesy Marc Janoschek/LANL. Watch a video on the research here.

Groundbreaking work at two Department of Energy national laboratories has confirmed plutonium's magnetism, which scientists have long theorized but have never been able to experimentally observe. The advances that enabled the discovery hold great promise for materials, energy and computing applications.

Plutonium was first produced in 1940 and its unstable nucleus allows it to undergo fission, making it useful for nuclear fuels as well as for nuclear weapons. Much less known, however, is that the electronic cloud surrounding the plutonium nucleus is equally unstable and makes plutonium the most electronically complex element in the periodic table, with intriguingly intricate properties for a simple elemental metal.

While conventional theories have successfully explained plutonium's complex structural properties, they also predict that plutonium should order magnetically. This is in stark contrast with experiments, which had found no evidence for magnetic order in plutonium.

Finally, after seven decades, this scientific mystery on plutonium's "missing" magnetism has been resolved. Using neutron scattering, researchers from the Department of Energy's Los Alamos and Oak Ridge (ORNL) national laboratories have made the first direct measurements of a unique characteristic of plutonium's fluctuating magnetism.

In a recent paper in the journal Science Advances, Marc Janoschek from Los Alamos, the paper's lead scientist, explains that plutonium is not devoid of magnetism, but in fact its magnetism is just in a constant state of flux, making it nearly impossible to detect.

"Plutonium sort of exists between two extremes in its electronic configuration--in what we call a quantum mechanical superposition," Janoschek said. "Think of the one extreme where the electrons are completely localized around the plutonium ion, which leads to a magnetic moment. But then the electrons go to the other extreme where they become delocalized and are no longer associated with the same ion anymore."

Using neutron measurements made on the ARCS instrument at ORNL's Spallation Neutron Source, a DOE Office of Science User Facility, Janoschek and his team determined that the fluctuations have different numbers of electrons in plutonium's outer valence shell--an observation that also explains abnormal changes in plutonium's volume in its different phases.

Neutrons are uniquely suited to this research as they are able to detect magnetic fluctuations. "The fluctuations in plutonium happen on a specific time scale that no other method is sensitive to," said Janoschek.

"This is a big step forward, not only in terms of experiment but in theory as well. We successfully showed that dynamical mean field theory more or less predicted what we observed," Janoschek said. "It provides a natural explanation for plutonium's complex properties and in particular the large sensitivity of its volume to small changes in temperature or pressure."

Janoschek's research was born out of a broader endeavor to study plutonium but was met with several obstacles along the way. Plutonium is radioactive and must be handled with great care, so the approval process for this experiment lasted two years before the project was finally accepted.

Furthermore, while the science team knew that neutron spectroscopy measurements were key to making progress on plutonium's "missing" magnetism, the analysis of previous neutron efforts by other teams taught them their sample needed to be improved in two unique ways: First, typically available plutonium predominantly consists of the isotope plutonium-239, which is highly absorbent of neutrons and would obscure the weak signal they sought.

The team used plutonium-242 instead, an isotope that absorbs far fewer neutrons. In addition, plutonium typically adsorbs hydrogen, which leads to strong spurious signals exactly where the magnetic signals were suspected.

"We used a special method developed at Los Alamos to remove the hydrogen from our sample," said Janoschek. "Many people across our laboratory and the complex helped solve these problems, but I'm especially grateful to Eric Bauer, Capability Leader for Materials Synthesis and Characterization in the Condensed Matter and Magnet Science group at Los Alamos, for helping me design a successful experiment."

Siegfried Hecker, former director of Los Alamos and one of the foremost international authorities on plutonium science, said, "The article by M. Janoschek, et al., is a tour de force. Through a great combination of dynamical mean field theory and experiment, neutron spectroscopy, it demonstrates that the magnetic moment in delta-plutonium is dynamic, driven by valence fluctuations, rather than missing.

"It also provides the best explanation to date as to why plutonium is so sensitive to all external perturbations - something that I have struggled to understand for 50 years now," Hecker said.

That this work yielded groundbreaking results is also reflected in the reactions of fellow scientists in the plutonium community: "More than one person has stated this is the most significant measurement on plutonium in a generation," said Lawrence Livermore National Laboratory's Program Chair for Plutonium Futures Scott McCall.

These observations not only establish a microscopic explanation for why plutonium is structurally unstable, but more broadly, suggest an improved understanding of complex, functional materials that frequently are characterized by similar electronic dichotomies.

Indeed, the dynamical mean field theory calculations used in this work have reached a new level of sophistication. Janoschek notes that the methods developed in this research promise to open the door for future investigations into those other complex materials that are considered as critical for future computing and energy applications.

Janoschek and his team ran the dynamical mean field theory calculations on the Titan supercomputer located at the Oak Ridge Leadership Computing Facility (OLCF) at ORNL. Janoschek said the team used nearly 10 million core hours for their computations.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
DOE/Oak Ridge National Laboratory
Nuclear Power News - Nuclear Science, Nuclear Technology
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CIVIL NUCLEAR
Russia Will Start Selling Enriched Uranium to Europe
Moscow, Russia (Sputnik) Jul 14, 2015
Russia's top exporter of primary stage nuclear material has completed a pilot shipment to Germany and Sweden via its northern Ust-Luga seaport. Techsnabexport performed the shipment jointly with its Isotope sister company as part of a project to build a transport and logistics hub in the Leningrad region for the export of nuclear material. Until now such export by sea was primarily d ... read more


CIVIL NUCLEAR
Advanced composites may borrow designs from deep-sea shrimp

Nonmagnetic elements form unique magnet

Lower cost ultrasound degassing now possible in processing aluminum

New computer program may fix billion-dollar bit rot problem

CIVIL NUCLEAR
Lockheed Martin set to advance RF sensors development

Navy engineer invents new data transmission system

Fourth MUOS arrives in Florida for August launch

Airbus DS unveils new mobile welfare communication portfolio

CIVIL NUCLEAR
India to launch its heaviest commercial mission to date

Final payload integration begins for next Ariane 5 launch

Licensed commercial spaceport to be built in Houston, Texas

More Fidelity for SpaceX In-Flight Abort Reduces Risk

CIVIL NUCLEAR
Russian, Chinese Navigation Systems to Accommodate BRICS Members

Russia, India Cooperate on Space Exploration, Glonass Satellite System

China's Beidou navigation system more resistant to jamming

Global Positioning System: A Generation of Service to the World

CIVIL NUCLEAR
China Eastern orders 50 Boeing planes in $4.6 bn deal

Solar Impulse grounded in Hawaii for repairs

Climate change activists protest on Heathrow runway

Which electric plane crossed the English Channel first?

CIVIL NUCLEAR
Dutch hi-tech group ASML post small Q2 income dip

The quantum middle man

Fabricating inexpensive, high-temp SQUIDs for future electronic devices

Spintronics advance brings wafer-scale quantum devices closer to reality

CIVIL NUCLEAR
Near-Earth space hosts Kelvin-Helmholtz waves

Oregon experiments open window on landscape formation

Sentinel-2A completes critical first days in space

Beijing Quadrupled in Size in a Decade

CIVIL NUCLEAR
Severe harmful algal bloom for Lake Erie predicted

Pope urges dialogue, launches environmental SOS in Ecuador

The Good, the Bad, and the Algae

Water used for hydraulic fracturing varies widely across United States




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.