Space Industry and Business News  
NANO TECH
Nanowire measurements could improve computer memory

File image.
by Staff Writers
Washington DC (SPX) May 27, 2011
A recent study* at the National Institute of Standards and Technology (NIST) may have revealed the optimal characteristics for a new type of computer memory now under development.

The work, performed in collaboration with researchers from George Mason University (GMU), aims to optimize nanowire-based charge-trapping memory devices, potentially illuminating the path to creating portable computers and cell phones that can operate for days between charging sessions.

The nascent technology is based on silicon formed into tiny wires, approximately 20 nanometers in diameter. These "nanowires" form the basis of memory that is non-volatile, holding its contents even while the power is off-just like the flash memory in USB thumb drives and many mp3 players.

Such nanowire devices are being studied extensively as the possible basis for next-generation computer memory because they hold the promise to store information faster and at lower voltage.

Nanowire memory devices also hold an additional advantage over flash memory, which despite its uses is unsuitable for one of the most crucial memory banks in a computer: the local cache memory in the central processor.

"Cache memory stores the information a microprocessor is using for the task immediately at hand," says NIST physicist Curt Richter.

"It has to operate very quickly, and flash memory just isn't fast enough. If we can find a fast, non-volatile form of memory to replace what chips currently use as cache memory, computing devices could gain even more freedom from power outlets-and we think we've found the best way to help silicon nanowires do the job."

While the research team is by no means the only lab group in the world working on nanowires, they took advantage of NIST's talents at measurement to determine the best way to design charge-trapping memory devices based on nanowires, which must be surrounded by thin layers of material called dielectrics that store electrical charge.

By using a combination of software modeling and electrical device characterization, the NIST and GMU team explored a wide range of structures for the dielectrics. Based on the understanding they gained, Richter says, an optimal device can be designed.

"These findings create a platform for experimenters around the world to further investigate the nanowire-based approach to high-performance non-volatile memory," says Qiliang Li, assistant professor of Electrical and Computer Engineering at GMU. "We are optimistic that nanowire-based memory is now closer to real application."

* X. Zhu, Q. Li, D. Ioannou, D. Gu, J.E. Bonevich, H. Baumgart, J. Suehle and C.A. Richter. Fabrication, characterization and simulation of high performance Si nanowire-based non-volatile memory cells. Nanotechnology, May 16, 2011, 22 254020 doi: 10.1088/0957-4484/22/25/254020.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
National Institute of Standards and Technology (NIST)
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


NANO TECH
New nanoscale imaging may lead to new treatments for multiple sclerosis
Santa Barbara, CA (SPX) May 25, 2011
Laboratory studies by chemical engineers at UC Santa Barbara may lead to new experimental methods for early detection and diagnosis - and to possible treatments - for pathological tissues that are precursors to multiple sclerosis and similar diseases. Achieving a new method of nanoscopic imaging, the scientific team studied the myelin sheath, the membrane surrounding nerves that is comprom ... read more







NANO TECH
Hackers highlight Sony's need for new ideas

China to establish rare earths exchange

Trash to treasure: Turning steel-mill waste into bricks

Expert discovers simple method of dealing with harmful radioactive iodine

NANO TECH
Intelsat General To Support Armed Forces Radio And Television Service

Northrop Grumman Awarded Continuing Operation of Battlefield Airborne Communications Node Contract

ADTI Launches High Performance Antenna Arrays Protype Program

Northrop Grumman Awarded Contract to Develop EHF SatComms Antenna for B-2 Bomber

NANO TECH
ASTRA 1N delivered to French Guiana

Russia sends two Soyuz carrier rockets to French Guiana

ILS Proton Successfully Launches Telstar 14R And Estrela do Sul 2 for Telesat

Satellites for Asia and India are orbited on Arianespace's third Ariane 5 mission of 2011

NANO TECH
EU to launch Galileo satellites this fall

Galileo: Europe prepares for October launch

EU announces launch date for first Galileo satellites

Europe's first EGNOS airport to guide down giant Beluga aircraft

NANO TECH
Air traffic almost normal as Icelandic volcano settles

Volcano cloud briefly closes north German airspace

Singapore Airlines to set up new low-cost carrier

Expert warns against 'experimenting' with flights in ashw/

NANO TECH
Advance design-dependent process monitoring for semiconductor wafer manufacturing

New Bandwidth Management Techniques Boost Operating Efficiency In Multi-Core Chips

New electronics material closer to commercial reality

Graphene optical modulators could lead to ultrafast communications

NANO TECH
NASA satellite helps find 17 Egypt pyramids

Satellites reveal 'lost' Egyptian pyramids

GOES-13 Satellite Video Close-Up of Deadly Joplin, Missouri Tornado

GMES Masters seeks innovative uses for Earth observation data

NANO TECH
Bees to monitor air quality at Berlin airport

Europe may ban plastic bags

Falklands mines a running drain of funds

Indian government vows to pursue Bhopal case


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement