Space Industry and Business News  
INTERNET SPACE
Nanowalls for smartphones
by Staff Writers
Zurich, Switzerland (SPX) Jan 08, 2016


File image.

From smartphones to the operating interfaces of ticket machines and cash dispensers, every touchscreen we use requires transparent electrodes: The devices' glass surface is coated with a barely visible pattern made of conductive material. It is because of this that the devices recognise whether and where exactly a finger is touching the surface.

Researchers under the direction of Dimos Poulikakos, Professor of Thermodynamics, have now used 3D print technology to create a new type of transparent electrode, which takes the form of a grid made of gold or silver "nanowalls" on a glass surface. The walls are so thin that they can hardly be seen with the naked eye. It is the first time that scientists have created nanowalls like these using 3D printing.

The new electrodes have a higher conductivity and are more transparent than those made of indium tin oxide, the standard material used in smartphones and tablets today. This is a clear advantage: The more transparent the electrodes, the better the screen quality. And the more conductive they are, the more quickly and precisely the touchscreen will work.

Third dimension
"Indium tin oxide is used because the material has a relatively high degree of transparency and the production of thin layers has been well researched, but it is only moderately conductive," says Patrik Rohner, a PhD student in Poulikakos' team.

In order to produce more conductive electrodes, the ETH researchers opted for gold and silver, which conduct electricity much better. But because these metals are not transparent, the scientists had to make use of the third dimension.

ETH professor Poulikakos explains: "If you want to achieve both high conductivity and transparency in wires made from these metals, you have a conflict of objectives. As the cross-sectional area of gold and silver wires grows, the conductivity increases, but the grid's transparency decreases."

The solution was to use metal walls only 80 to 500 nanometres thick, which are almost invisible when viewed from above. Because they are two to four times taller than they are wide, the cross-sectional area, and thus the conductivity, is sufficiently high.

Ink-jet printer with tiny print head
The researchers produced these tiny metal walls using a printing process known as Nanodrip, which Poulikakos and his colleagues developed three years ago. Its basic principle is a process called electrohydrodynamic ink-jet printing. In this process scientists use inks made from metal nanoparticles in a solvent; an electrical field draws ultra-small droplets of the metallic ink out of a glass capillary. The solvent evaporates quickly, allowing a three-dimensional structure to be built up drop by drop.

What is special about the Nanodrip process is that the droplets that come out of the glass capillary are about ten times smaller than the aperture itself. This allows for much smaller structures to be printed.

"Imagine a water drop hanging from a tap that is turned off. And now imagine that another tiny droplet is hanging from this drop - we are only printing the tiny droplet," Poulikakos explains. The researchers managed to create this special form of droplet by perfectly balancing the composition of metallic ink and the electromagnetic field used.

Cost-efficient production
The next big challenge will now be to upscale the method and develop the print process further so that it can be implemented on an industrial scale. To achieve this, the scientists are working with colleagues from ETH spin-off company Scrona.

They have no doubt that once it is upscaled, the technology will bring a host of advantages compared with existing methods. In particular, it will likely be more cost-efficient, as Nanodrip printing, unlike the production of indium tin oxide electrodes, does not require a cleanroom environment.

The new electrodes should also be more suitable for large touchscreens due to their higher conductivity. And finally the process is also the first to allow you to vary the height of the nanowalls directly while printing, says ETH PhD student Rohner.

Another possible future application could be in solar cells, where transparent electrodes are also required. The more transparent and conductive they are, the more electricity that can be harnessed. And lastly, the electrodes could also play a role in the further development of curved display using OLED technology.

Schneider J, Rohner P, Thureja D, Schmid M, Galliker P, Poulikakos D: Electrohydrodynamic NanoDrip printing of high aspect ratio metal grid transparent electrodes. Advanced Functional Materials, 15 December 2015, doi: 10.1002/adfm.201503705


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
ETH Zurich
Satellite-based Internet technologies






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
INTERNET SPACE
Fitbit 'smart fitness watch' disappoints market
Las Vegas (AFP) Jan 6, 2016
Fitbit on Tuesday unveiled its "smart fitness watch," aiming to get into the growing smartwatch segment with upgraded fitness tracking features. But the company's share price plunged amid disappointment over its prospects for keeping pace with rivals like Apple Watch. The company, which leads the wearable tech market with its wrist-worn trackers but is being challenged by the rise of sma ... read more


INTERNET SPACE
Chameleons deliver powerful tongue-lashing

Transition metal catalyst prompts 'conjunctive' cross-coupling reaction

Coulomb blockade in organic conductors found, a world first

Adjustable adhesion power

INTERNET SPACE
Raytheon to produce, test Navy Multiband Terminals

ADS to build one of two satellites for future COMSAT NG system

Thales and Airbus to supply French military satellite communications

Elbit upgrades tactical intelligence capabilities for Asian country

INTERNET SPACE
Russian Proton-M Carrier Rocket With Express-AMU1 Satellite Launched

45th Space Wing launches ORBCOMM; historically lands first stage booster

SpaceX rocket landing opens 'new door' to space travel

NASA orders second Boeing Crew Mission to ISS

INTERNET SPACE
Europe's first decade of navigation satellites

Indra will deploy navigation aid systems in 20 Chinese airports

China builds ground service center for satnav system

Galileo's dozen: 12 satellites now in orbit

INTERNET SPACE
Dassault says Falcon business jet orders dive in 2015

BAE Systems developing EW suite for special ops aircraft

Pakistan eyeing deal for U.S. F-16 jets

Northrop Grumman to produce E-2D Advanced Hawkeye for Japan

INTERNET SPACE
Choreographing the dance of electrons

Optoelectronic microprocessors built using existing chip manufacturing

A new metamaterial will speed up computers

Succeeded in observing a two-phonon quantum interference, a world first

INTERNET SPACE
ASA Awards Letter Contract for Landsat 9 Imager-2

NASA analyzes Paraguay's heavy rainfall

NASA's MMS delivers promising initial results

NOAA's Jason-3 spacecraft ready for launch campaign

INTERNET SPACE
India's smog-shrouded capital pulls cars off roads

New restrictions in Tehran after 18th day of bad air

Indonesia to appeal rejection of $565 mn haze lawsuit

India's smog-shrouded capital pulls cars off roads









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.