Space Industry and Business News  
NANO TECH
Nanotube fiber antennas as capable as copper
by Staff Writers
Houston TX (SPX) Oct 26, 2017


Rice University graduate student Amram Bengio sets up a nanotube fiber antenna for testing. Scientists at Rice and the National Institute of Standards and Technology have determined that nanotube fibers made at Rice can be as good as copper antennas but 20 times lighter.

Fibers made of carbon nanotubes configured as wireless antennas can be as good as copper antennas but 20 times lighter, according to Rice University researchers. The antennas may offer practical advantages for aerospace applications and wearable electronics where weight and flexibility are factors.

The discovery offers more potential applications for the strong, lightweight nanotube fibers developed by the Rice lab of chemist and chemical engineer Matteo Pasquali. The lab introduced the first practical method for making high-conductivity carbon nanotube fibers in 2013 and has since tested them for use as brain implants and in heart surgeries, among other applications.

The research appears in Applied Physics Letters and could help engineers who seek to streamline materials for airplanes and spacecraft where weight equals cost. Increased interest in wearables like wrist-worn health monitors and clothing with embedded electronics could benefit from strong, flexible and conductive fiber antennas that send and receive signals, Pasquali said.

The Rice team and colleagues at the National Institute of Standards and Technology (NIST) developed a metric they called "specific radiation efficiency" to judge how well nanotube fibers radiated signals at the common wireless communication frequencies of 1 and 2.4 gigahertz and compared their results with standard copper antennas. They made thread comprising from eight to 128 fibers that are about as thin as a human hair and cut to the same length to test on a custom rig that made straightforward comparisons with copper practical.

"Antennas typically have a specific shape, and you have to design them very carefully," said Rice graduate student Amram Bengio, the paper's lead author. "Once they're in that shape, you want them to stay that way. So one of the first experimental challenges was getting our flexible material to stay put."

Contrary to earlier results by other labs (which used different carbon nanotube fiber sources), the Rice researchers found the fiber antennas matched copper for radiation efficiency at the same frequencies and diameters. Their results support theories that predicted the performance of nanotube antennas would scale with the density and conductivity of the fiber.

"Not only did we find that we got the same performance as copper for the same diameter and cross-sectional area, but once we took the weight into account, we found we're basically doing this for 1/20th the weight of copper wire," Bengio said.

"Applications for this material are a big selling point, but from a scientific perspective, at these frequencies carbon nanotube macro-materials behave like a typical conductor," he said.

Even fibers considered "moderately conductive" showed superior performance, he said. Although manufacturers could simply use thinner copper wires instead of the 30-gauge wires they currently use, those wires would be very fragile and difficult to handle, Pasquali said.

"Amram showed that if you do three things right - make the right fibers, fabricate the antenna correctly and design the antenna according to telecommunication protocols - then you get antennas that work fine," he said. "As you go to very thin antennas at high frequencies, you get less of a disadvantage compared with copper because copper becomes difficult to handle at thin gauges, whereas nanotubes, with their textile-like behavior, hold up pretty well."

Research paper

NANO TECH
Terahertz spectroscopy goes nano
Providence RI (SPX) Oct 20, 2017
Brown University researchers have demonstrated a way to bring a powerful form of spectroscopy - a technique used to study a wide variety of materials - into the nano-world. Laser terahertz emission microscopy (LTEM) is a burgeoning means of characterizing the performance of solar cells, integrated circuits and other systems and materials. Laser pulses illuminating a sample material cause t ... read more

Related Links
Rice University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NANO TECH
The drop that's good to the very end

Study shows how rough microparticles can cause big problems

Selective memory makes data caches 50 percent more efficient

Electrode materials from the microwave oven

NANO TECH
82nd Airborne tests in-flight communication system for paratroopers

NRL clarifies valley polarization for electronic and optoelectronic technologies

Harris supplying tactical radios to Navy, Marines

SES GS to Provide More MEO-enabled SATCOM Solutions for U.S. Government

NANO TECH
NANO TECH
Lockheed Martin's first GPS III Satellite receives green light from Air Force

exactEarth Announces Agreement with Alltek Marine to Expand Small Vessel Tracking Service Offering

BeiDou navigation to cover Belt and Road countries by 2018

China's BeiDou-3 satellites get new chips

NANO TECH
Trump order allows Air Force to tackle pilot shortage

State Dept. proposes $343B C-17 support contract with Kuwait

Hear This: 30 Percent Less Noise

Multiple countries set to receive new eyes in the sky for Apache attack helicopters

NANO TECH
Research team led by NUS scientists breaks new ground in memory technology

Researchers bring optical communication onto silicon chips

Bridging the terahertz gap

Liquid metal discovery ushers in new wave of chemistry and electronics

NANO TECH
First joint France-China satellite to study oceans

Sentinel-5P: satellite in excellent health

Study casts doubt on warming implications of brown carbon aerosol from wildfires

Watching plant photosynthesis from space

NANO TECH
Cyprus struggles to manage waste as tourist numbers soar

Delhi chokes on toxic haze despite Diwali fireworks ban

New Delhi shuts power plant in fight against Diwali smog

Smog defies China's Communist Party congress









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.