Space Industry and Business News
SOLAR DAILY
Nanoparticles self-assemble to harvest solar energy
These images show the device's solar-thermal conversion (left) and solar thermoelectric harvesting (right).
Nanoparticles self-assemble to harvest solar energy
by Staff Writers
Washington DC (SPX) Feb 24, 2023

Solar-thermal technology is a promising environmentally friendly energy harvesting method with a potential role to play in solving the fossil fuel energy crisis.

The technology transforms sunlight into thermal energy, but it's challenging to suppress energy dissipation while maintaining high absorption. Existing solar energy harvesters that rely on micro- or nanoengineering don't have sufficient scalability and flexibility, and will require a novel strategy for high-performance solar light capture while simultaneously simplifying fabrication and reducing costs.

In APL Photonics, from AIP Publishing, researchers from Harbin University, Zhejiang University, Changchun Institute of Optics, and the National University of Singapore designed a solar harvester with enhanced energy conversion capabilities.

The device employs a quasiperiodic nanoscale pattern - meaning most of it is an alternating and consistent pattern, while the remaining portion contains random defects (unlike a nanofabricated structure) that do not affect its performance. In fact, loosening the strict requirements on the periodicity of the structure significantly increases the device's scalability.

The fabrication process makes use of self-assembling nanoparticles, which form an organized material structure based on their interactions with nearby particles without any external instructions.

Thermal energy harvested by the device can be transformed to electricity using thermoelectric materials.

"Solar energy is transferred as an electromagnetic wave within a broad frequency range," said author Ying Li of Zhejiang University. "A good solar-thermal harvester should be able to absorb the wave and get hot, thereby converting solar energy into thermal energy. The process requires a high absorbance (100% is perfect), and a solar harvester should also suppress its thermal radiation to preserve the thermal energy, which requires a low thermal emissivity (zero means no radiation)."

To achieve these goals, a harvester is usually a system with a periodic nanophotonic structure. But the flexibility and scalability of these modules can be limited due to the rigidity of the pattern and high fabrication costs.

"Unlike previous strategies, our quasiperiodic nanophotonic structure is self-assembled by iron oxide (Fe3O4) nanoparticles, rather than cumbersome and costly nanofabrication," said Li.

Their quasiperiodic nanophotonic structure achieves high absorbance (greater than 94%), suppressed thermal emissivity (less than 0.2), and under natural solar illumination, the absorber features a fast and significant temperature rise (greater than 80 degrees Celsius).

Based on the absorber, the team built a flexible planar solar thermoelectric harvester, which reached a significant sustaining voltage of over 20 millivolts per square centimeter. They expect it to power 20 light-emitting diodes per square meter of solar irradiation. This strategy can serve low-power density applications for more flexible and scalable engineering of solar energy harvesting.

"We hope our quasiperiodic nanophotonic structure will inspire other work," said Li. "This highly versatile structure and our fundamental research can be used to explore the upper limit of solar energy harvesting, such as flexible scalable solar thermoelectric generators, which can serve as an assistant solar harvesting component to increase the total efficiency of photovoltaic architectures."

Research Report:"Scalable selective absorber with quasi-periodic nanostructure for low-grade solar energy harvesting"

Related Links
American Institute of Physics
All About Solar Energy at SolarDaily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
SOLAR DAILY
Non-fused-ring donors and acceptors boost organic solar cell efficiency to over 14 pecent
Beijing, China (SPX) Feb 17, 2023
Non-fused-ring organic photoactive materials have attracted broad attention in recent years due to their low synthetic cost. Different from the rigid coplanar structure of fused-ring molecules, the easily rotated conformation of non-fused-ring molecules could lead to the different energetic disorder, which greatly affects the intramolecular electron transport and thus the device performance. Recently, Prof. Shaoqing Zhang replaced the 2-ethylhexyl side chain of A4T-16, an efficient completely non- ... read more

SOLAR DAILY
Scientists identify new mechanism of corrosion

JEMCA, a new electron microscope center to advance in research into structural biology and new materials

Is biodegradable better? Making sense of 'compostable' plastics

Scientists believe they've found untapped helium reserves

SOLAR DAILY
Advanced comms satellite launched from Sichuan

Babcock secures UK Military Skynet satellite contract

Multi aircraft and naval ships showcase interoperability

SES, ThinKom and Hughes enable multi-orbit resilient connectivity for critical airborne missions

SOLAR DAILY
SOLAR DAILY
China to employ BeiDou satellite-based augmentation system in railway survey

GEODNET offers centimeter precision and GNSS corrections for OEMS and Ag Sector

New Galileo service set to deliver 20 cm accuracy

HawkEye 360 to monitor GPS interference in support of the US Space Force

SOLAR DAILY
Airline websites swamped as Hong Kong ticket giveaway takes off

UK slams Lufthansa ad over 'misleading' green claims

US releases pilot's high-altitude selfie with Chinese balloon

China accuses Biden of 'saying one thing, doing another' over balloon spat

SOLAR DAILY
CHIPS Act just the first step in addressing threats to US leadership in advanced computing

US-funded chip firms to face curbs on expanding in China

Solid-state thermal transistor demonstrated

A new way for quantum computing systems to keep their cool

SOLAR DAILY
Maxar awarded Phase 3b of One World Terrain Contract for US Army

Planet and ASU expand partnership to build global scale solutions for sustainability

Call opens for ESA's twelfth Earth Explorer

New space capability mapping tool unveiled at the 2023 Avalon Airshow

SOLAR DAILY
Global wildlife contaminated by 'forever chemicals'

'All this rubble': Pollution fears over Turkey quake waste

US railroad company ordered to pay for cleanup of toxic derailment

Kenya's Ruto urges accountability for world polluters

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.