![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers San Diego CA (SPX) Mar 22, 2016
As electronics grow ever more intricate, so must the tools required to fix them. Anticipating this challenge, scientists turned to the body's immune system for inspiration and have now built self-propelled nanomotors that can seek out and repair tiny scratches to electronic systems. They could one day lead to flexible batteries, electrodes, solar cells and other gadgets that heal themselves. The researchers present their work at the 251st National Meeting and Exposition of the American Chemical Society (ACS). ACS, the world's largest scientific society, is holding the meeting here through Thursday. It features more than 12,500 presentations on a wide range of science topics. "Electronic circuits are very sophisticated these days," says Jinxing Li. "But a crack, even an extremely small one, can interrupt the flow of current and eventually lead to the failure of a device. Traditional electronics can be fixed with soldering, but repairing advanced electronics on a nanoscale requires innovation." Gadgets will soon be more ubiquitous than ever, appearing in our clothes, implants and accessories, says Li, a Ph.D. candidate in the lab of Joseph Wang, D.Sc., at the University of California at San Diego. But finding ways to fix nanocircuits, battery electrodes or other electronic components when they break remains a challenge. Replacing whole devices or even parts can be tricky or expensive, particularly if they're integrated in clothes or located in remote places. Creating devices that can fix themselves would be ideal, according to Wang, whose lab develops nanoscale machines. To work toward this goal, his lab and others have turned to nature for ideas. "If you cut your finger, for example, platelets will automatically localize at the wound location and help start the healing process," Li says. "So what we wanted to do is create and use extremely small robots to perform the same function, except in an electronic system." To accomplish this, Wang's team collaborated with the group of Anna Balazs, Ph.D., who is at the University of Pittsburgh. They designed and built nanoparticles out of gold and platinum that are powered by hydrogen peroxide. The platinum spurs the fuel to break down into water and oxygen, which propels the particles. Testing showed that the nanomotors zoomed over the surface of a broken electronic circuit connected to a light-emitting diode, or LED. When they approached the scratch, they got lodged in it and bridged the gap between the two sides. Because the particles are made of conductive metals, they allowed current to flow again, and the LED lit up. Li says the nanomotors would be ideal for hard-to-repair electronic components such as the conductive layer of solar cells, which are subject to harsh environmental conditions and prone to scratching. They could also be used to heal flexible sensors and batteries, which the Wang lab is also developing. Additionally, the same concept with different materials and fuels could be used in medical applications for delivering drugs to specific locations. The lab is also developing new nanomotors that could potentially be deployed in the body to treat different diseases, such as stomach infections.
Related Links American Chemical Society Nano Technology News From SpaceMart.com Computer Chip Architecture, Technology and Manufacture
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |