Space Industry and Business News  
CARBON WORLDS
Nanodiamonds feel the heat
by Staff Writers
Osaka, Japan (SPX) Jan 21, 2021

file illustration only

A team of scientists from Osaka University, The University of Queensland, and the National University of Singapore's Faculty of Engineering used tiny nanodiamonds coated with a heat-releasing polymer to probe the thermal properties of cells. When irradiated with light from a laser, the sensors acted both as heaters and thermometers, allowing the thermal conductivity of the interior of a cell to be calculated. This work may lead to a new set of heat-based treatments for killing bacteria or cancer cells.

Even though the cell is the fundamental unit of all living organisms, some physical properties have remained difficult to study in vivo. For example, a cell's thermal conductivity, as well as the rate that heat can flow through an object if one side is hot while the other side is cold, remained mysterious. This gap in our knowledge is important for applications such as developing thermal therapies that target cancer cells, and for answering fundamental questions about cell operation.

Now, the team has developed a technique that can determine the thermal conductivity inside living cells with a spatial resolution of about 200 nm. They created tiny diamonds coated with a polymer, polydopamine, that emit both fluorescent light as well as heat when illuminated by a laser. Experiments showed that such particles are non-toxic and can be used in living cells. When inside a liquid or a cell, the heat raises the temperature of the nanodiamond.

In media with high thermal conductivities, the nanodiamond did not get very hot because heat escaped quickly, but in an environment of low thermal conductivity, the nanodiamonds became hotter. Crucially, the properties of the emitted light depend on the temperature, so the research team could calculate the rate of heat flow from the sensor to the surroundings.

Having good spatial resolution allowed measurements in different locations inside the cells. "We found that the rate of heat diffusion in cells, as measured by the hybrid nanosensors, was several times slower than in pure water, a fascinating result which still waits for a comprehensive theoretical explanation and was dependent on the location," senior author Taras Plakhotnik says.

"In addition to improving heat-based treatments for cancer, we think potential applications for this work will result in a better understanding of metabolic disorders, such as obesity," senior author Madoka Suzuki says. This tool may also be used for basic cell research, for example, to monitor biochemical reactions in real time.

"In situ measurements of intracellular thermal conductivity using heater thermometer hybrid diamond nanosensors"

Research paper


Related Links
Osaka University
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CARBON WORLDS
New method makes graphene nanoribbons easier to produce
Moscow, Russia (SPX) Jan 12, 2021
Russian researchers have proposed a new method for synthesizing high-quality graphene nanoribbons - a material with potential for applications in flexible electronics, solar cells, LEDs, lasers, and more. Presented in The Journal of Physical Chemistry C, the original approach to chemical vapor deposition, offers a higher yield at a lower cost, compared with the currently used nanoribbon self-assembly on noble metal substrates. Silicon-based electronics are steadily approaching their limits, and on ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
Saffire Ignites New Discoveries in Space

Physicists propose a new theory to explain one dimensional quantum liquids formation

Seeing in a flash

EOS supports Texas Rocket Engineering Laboratory (TREL) to fuel additive manufacturing education

CARBON WORLDS
Northrop Grumman lands $325M deal for Air Force JSTARS sustainment

ThinKom completes Over-the-Air tests with K/Q-Band antenna on protected comms satellite

Defense, Commerce departments join to find 5G solutions

France signs agreement to purchase Northrop Grumman's E-2D advanced Hawkeye

CARBON WORLDS
CARBON WORLDS
NASA advancing global navigation satellite system capabilities

China sees booming satellite navigation, positioning industry

Galileo satellites help rescue Vendee Globe yachtsman

BeiDou navigation base in south China targets services in ASEAN

CARBON WORLDS
AFRL, AFLCMC Laboratory collaboration addresses pilot oxygen concerns

Air Force task force studies accountability throughout the command

Erdogan seeks solution with Biden over F-35 jets

Northrop Grumman to Enable New F-35 Warfighting Capability

CARBON WORLDS
Transforming quantum computing's promise into practice

ASML earnings up despite pandemic

The changing paradigm of next-generation semiconductor memory development

Light-based processors boost machine-learning processing

CARBON WORLDS
Dust from the deep sea provides clues to future wind patterns

Winds of change: German weather maps to herald nation's diversity

Subscriptions to satellite alerts linked to decreased deforestation in Africa

A new TanSat XCO2 global product for climate studies

CARBON WORLDS
Seagrass 'Neptune balls' bundle plastic waste

Early pandemic lockdowns had limited impact on urban air pollution

Mexico City plastic ban poses challenge for virus-hit firms

From macaques to crabs, wildlife faces threat from face masks









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.