Subscribe free to our newsletters via your
. Space Industry and Business News .




EXO WORLDS
NRL Scientist Explores Birth of a Planet
by Staff Writers
Washington DC (SPX) Sep 10, 2014


Naval Research Laboratory scientist Dr. John Carr is part of an international team that has discovered evidence of a planet forming around a distant star. Image courtesy U.S. Naval Research Laboratory/Jamie Hartman.

Dr. John Carr, a scientist at the U.S. Naval Research Laboratory (NRL), is part of an international team that has discovered what they believe is evidence of a planet forming around a star about 335 light years from Earth. This research is published in the August 20th issue of The Astrophysical Journal.

Carr and the other research team members set out to study the protoplanetary disk around a star known as HD 100546, and as sometimes happens in scientific inquiry, it was by "chance" that they stumbled upon the formation of the planet orbiting this star.

A protoplanetary disk, or circumstellar disk, is a very large disk of material orbiting a newly formed star out of which a planetary system may form. The team was studying the warm gas in this disk using a technique called spectro-astrometry, which allows astronomers to detect small changes in the position of moving gas.

The researchers discovered an "extra" source of gaseous emission from carbon monoxide molecules that could not be explained by the protoplanetary disk alone. By tracking the changes in velocity and position of this extra emission over the years of the observations, they were able to show that it is orbiting around the young star.

The distance from the star is somewhat larger than the distance of Saturn from the Sun. The evidence suggests that they are observing hot gas that surrounds an orbiting young planet. Carr points out that rather than seeing the planet directly, they are detecting the gas as it swirls around and onto the forming planet.

Through modeling carried out by Dr. Sean Brittain, a Clemson University astrophysicist and the lead author on the paper, and with additional data gathered by the team to confirm their initial hypothesis, they were able to investigate the extra emission as it orbited the star. The authors concluded that a likely explanation for the observations is a small circumplanetary disk of hot gas orbiting a forming planet.

The candidate planet would be a gas giant at least three times the mass of Jupiter. The theory is that material from the large protoplanetary disk feeds into the circumplanetary disk, which then feeds onto the growing planet. Hence, a circumplanetary disk plays a mediating role in the growth of the planet.

The remnants of a circumplanetary disk could also give birth to moons, such as those seen around Jupiter in our solar system. As Carr explains, a novel aspect of this new evidence for planet formation is the possible detection of a circumplanetary disk. The team's study is based on four sets of observations gathered in 2003, 2006, 2010, and 2013. They used the Gemini Observatory and the Very Large Telescope at the European Southern Observatory, both located in Chile.

The Gemini Observatory consists of twin 8.1-meter diameter optical/infrared telescopes located on mountains in Hawaii and Chile. The VLT is not just one telescope, but an array of four, each with a main mirror of 8.2 meters in diameter. The data were collected using high-resolution infrared spectrographs that allowed precise measurements of the motions of molecular gas surrounding the star.

"These results provide a rare opportunity," Carr says, "to study planet formation in action. Our analysis strongly suggests we are observing a disk of hot gas that surrounds a forming giant planet in orbit around the star.

"While such circumplanetary disks have been theorized to surround giant planets at birth and to control the flow of gas onto the growing planet, these findings are the first observational evidence for their existence. If our interpretation is correct, we are essentially seeing a planet caught in the act of formation."

Looking ahead, the team would like to continue to monitor the motion of the planet and obtain additional data to better define the properties of the circumplanetary disk.

They predict that the planet and its disk will disappear from view in about two years time when they become hidden by the inner edge of the circumstellar disk. So, if the team's model is correct, the signature of the orbiting planet will not be seen for another 15 years until its orbit brings it back into view.

.


Related Links
U.S. Naval Research Laboratory (NRL)
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EXO WORLDS
How NASA's New Carbon Observatory Will Help Us Understand Alien Worlds
Moffet Field CA (SPX) Sep 08, 2014
On July 2, NASA successfully launched the Orbiting Carbon Observatory-2 (OCO-2), a remote sensing satellite on a mission to precisely measure carbon dioxide levels in our planet's atmosphere. As a bonus OCO-2 will also help prepare us for eventually probing the atmospheres of alien worlds in sharper detail. Why study carbon dioxide? This gas essentially serves as Earth's thermostat. As a " ... read more


EXO WORLDS
Where to grab space debris

Space Traffic Control Architecture

U.S. military taps Northrop Grumman for new technology

Officials expand space-tracking website

EXO WORLDS
FirstNet-related Tactical LTE Communications System at Urban Shield Exercise

Intelsat General Extends Contract to Provide Satellite Capacity to Forces in Afghanistan

UAE contracts for enhanced tactical communications

Harris' tactical manpack radio gets NSA certification

EXO WORLDS
MEASAT-3b and Optus 10 given go-ahead for Ariane 5 Sept 11 launch

Proton Launches May Compete on Price With US Falcons

SpaceX launches second satellite in the past month

SpaceX launches AsiaSat 6 satellite

EXO WORLDS
Lockheed Martin-Built gps IIR/IIR-M satellites reach 200 years of combined operational life

Australia approves GPS project

Too Early for Conclusions on Galileo Satellites Incident

Russia's Foton-M Satellite Landing Scheduled for September 1

EXO WORLDS
IBC Engineered Materials to Supply BeralCast Castings for F-35

Congress notified of possible helo sale to Brazil

Flight MH17 hit by numerous 'high energy objects'

Singapore has full fleet of Alenia Aermacchi trainer planes

EXO WORLDS
Squeezed quantum communication

Layered graphene sandwich for next generation electronics

A low-energy optical circuit for a new era of technology

New species of electrons can lead to better computing

EXO WORLDS
EIAST announces Remote Sensing Applications Competition 2014

NASA's RapidScat: Some Assembly Required - in Space

NASA Awards Ozone Mapping and Profiling Suite Modification for JPS-2 Mission

Bardarbunga Belches

EXO WORLDS
Scientists discover hazardous waste-eating bacteria

A Mexican plant could lend the perfume industry more green credibility

New plan to avoid dumping dredge waste on Great Barrier Reef

Giant garbage patches help redefine ocean boundaries




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.