Space Industry and Business News  
SOLAR DAILY
NRL Issued Patent for Solar Microbial Fuel Cell
by Staff Writers
Washington DC (SPX) Jun 23, 2017


Schematic depiction of simplified mechanism of power generation by the benthic microbial fuel cell (BMFC), without box labeled '5' corresponding to photosynthesis, and for the microbial photoelectrochemical solar microbial fuel cell (SMFC) reported here, with box labeled 5. Other labels include: (1) biofilm catalyzed anode reaction; (2) biofilm catalyzed cathode reaction; (3) fermentative reaction, and (4) the microbial oxygen barrier. (U.S. Naval Research Laboratory)

The U.S. Naval Research Laboratory (NRL), Center for Biomolecular Science and Engineering, has received a U.S. patent for a self-assembling, self-repairing, and self-contained microbial photoelectrochemical solar cell driven entirely by sunlight and microorganisms.

A solar microbial fuel cell (SMFC) is a non-semiconductor-based system, which employs microorganisms to generate electric power by photosynthetically replenishing reactants of a sealed microbial fuel cell using sunlight.

The SMFC reactants (glucose and oxygen) are internally regenerated by a group of photosynthetic microbes whose reactants, carbon dioxide (CO2) and water (H2O), are the products of the microbial fuel cell. This interdependency results in many thousands of hours of long-term electricity generation from sunlight without replenishment of the microbial fuel cell reactants.

"Natural photosynthetic systems, such as trees and algae blooms, self-repair, a property that makes them highly durable," said Dr. Lenny Tender, research chemist, Center for Bio/Molecular Science and Engineering. "Here, we incorporate photosynthetic organisms with the self-assembling and self-maintaining benthic microbial fuel cell (BMFC) to enable durable land-based photoelectrochemical solar cells."

The BMFC generates electrical power by oxidizing organic matter (fuel) residing in sediment pore water with oxygen (oxidant) in overlying water, and consists of an anode imbedded in the marine sediment connected by an external electrical circuit to a cathode positioned in overlying water.

Unlike the open marine-based BMFC generator, the SMFC apparatus does not require an endless flux of reactants from sediment and seawater to persistently generate power, but instead, recycles the organic matter sealed within the unit to regenerate the reactants.

"Microorganisms harvested from sea water in shallow coastal environments, in relatively low abundance, become enriched when the cell is sealed due to the accumulation of carbon dioxide and depletion of oxygen in the overlying water," Tender said.

"These organisms use sunlight to convert the electrode products to glucose and oxygen, which can be re-utilized in the electrode reactions eliminating the need for a constant flux of new glucose and oxygen."

Tender added that the SMFC combines energy storage with power delivery. Meaning, when there is abundant sunlight, photosynthesis will result in generation of fuel and oxidant, some of which can be used to generate power immediately, and the remainder accumulated to be used later when there is no Sun. This is ideally done without the need for capacitor or battery storage devices.

The SMFC can be 'stacked' in series to increase voltage and can power any device that currently uses a conventional photovoltaic power supply. However, work is underway to understand the limiting factors.

The patent for the solar microbial fuel cell is issued by the U.S. Patent and Trademark Office (USPTO), and is filed by patent #9531027, "Method and apparatus for generating electrical power using sunlight and microorganisms." Further information regarding the NRL patent and patent licensing can be found by contacting the laboratory's Technology Transfer Office.

SOLAR DAILY
Photopower for microlabs
Tokyo, Japan (SPX) Jun 16, 2017
Miniaturized devices such as microsensors often require an independent, equally miniaturized power supply. Searching for suitable systems, Japanese scientists have now developed a fully integrated microfluidic device that produces hydrogen fuel and converts it into electrical energy based on photocatalysis. As they report in the journal Angewandte Chemie, it works fully autonomously and delivers ... read more

Related Links
Center for Biomolecular Science and Engineering at NRL
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
A more sustainable way to refine metals

NREL-led research effort creates new alloys, phase diagram

Scientists develop molecular code for melanin-like materials

Universal stabilization

SOLAR DAILY
Harris Corp. awarded Special Forces radio contract

Airbus provides German troops with support communications at 15 sites worldwide

Airbus further extends channel partner program for military satellite communications in Asia

Radio communications have surprising influence on Earth's near-space environment

SOLAR DAILY
SOLAR DAILY
BDS Precise Service System covers over 300 Chinese cities

Galileo grows: two more satellites join working constellation

GIS is a powerful tool that should be used with caution

Japan launches satellite in bid for super accurate GPS system

SOLAR DAILY
Chinese and Russians aim to end Airbus-Boeing duopoly

NASA's TASAR trial takes flight on Alaska Airlines

US, Qatar agree F-15 fighter sale

Saab completes first Gripen E test flight

SOLAR DAILY
Breakthrough by Queen's University paves way for smaller electronic devices

Seeing the invisible with a graphene-CMOS integrated device

Researchers flip the script on magnetocapacitance

Graphene transistor could mean computers that are 1,000 times faster

SOLAR DAILY
NASA satellites image, measure Florida's extreme rainfall

The heat is on for Sentinel-3B

exactEarth Launches Revolutionary Global Real-Time Maritime Tracking and Information Service

Earth is a jewel, says astronaut after six months away

SOLAR DAILY
Lab on a chip could monitor health, germs and pollutants

'Green police' to battle Tunisia trash scourge

Garbage dumped in sea off Lebanon sparks outrage

Plastic in rivers major source of ocean pollution: study









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.