Space Industry and Business News  
TIME AND SPACE
NIST's new patent-pending method supplies entangled atoms fast
by Staff Writers
Washington DC (SPX) Nov 09, 2017


While quantum entanglement usually spreads through the atoms in an optical lattice via short-range interactions with the atoms' immediate neighbors (left), new theoretical research shows that taking advantage of long-range dipolar interactions among the atoms could enable it to spread more quickly (right), a potential advantage for quantum computing and sensing applications.

Physicists at the National Institute of Standards and Technology (NIST) have come up with a way to link a group of atoms' quantum mechanical properties among themselves far more quickly than is currently possible, potentially providing a tool for highly precise sensing and quantum computer applications. NIST has applied for a patent on the method, which is detailed in a new paper in Physical Review Letters.

The method, which has not yet been demonstrated experimentally, essentially would speed up the process of quantum entanglement in which the properties of multiple particles become interconnected with one other. Entanglement would propagate through a group of atoms in dramatically less time, allowing scientists to build an entangled system exponentially faster than is common today.

Arrays of entangled atoms suspended in laser light beams, known as optical lattices, are one approach to creating the logic centers of prototype quantum computers, but an entangled state is difficult to maintain more than briefly. Applying the method to these arrays could give scientists precious time to do more with these arrays of atoms before entanglement is lost in a process known as decoherence.

The method takes advantage of a physical relationship among the atoms called dipolar interaction, which allows atoms to influence each other over greater distances than previously possible. The research team's Alexey Gorshkov compares it to sharing tennis balls among a group of people.

While previous methods essentially allowed people to pass tennis balls only to a person standing next to them, the new approach would allow an individual to toss them to people across the room.

"It is these long-range dipolar interactions in 3-D that enable you to create entanglement much faster than in systems with short-range interactions," said Gorshkov, a theoretical physicist at NIST and at both the Joint Center for Quantum Information and Computer Science and the Joint Quantum Institute, which are collaborations between NIST and the University of Maryland.

"Obviously, if you can throw stuff directly at people who are far away, you can spread the objects faster."

Applying the technique would center around adjusting the timing of laser light pulses, turning the lasers on and off in particular patterns and rhythms to quick-change the suspended atoms into a coherent entangled system.

The approach also could find application in sensors, which might exploit entanglement to achieve far greater sensitivity than classical systems can. While entanglement-enhanced quantum sensing is a young field, it might allow for high-resolution scanning of tiny objects, such as distinguishing slight temperature differences among parts of an individual living cell or performing magnetic imaging of its interior.

Gorshkov said the method builds on two studies from the 1990s in which different NIST researchers considered the possibility of using a large number of tiny objects - such as a group of atom - as sensors. Atoms could measure the properties of a nearby magnetic field, for example, because the field would change their electrons' energy levels.

These earlier efforts showed that the uncertainty in these measurements would be advantageously lower if the atoms were all entangled, rather than merely a bunch of independent objects that happened to be near one another.

"Uncertainty is the key here," said Gorshkov. "You want that uncertainty as low as possible. If the atoms are entangled, you have less uncertainty about that magnetic field's magnitude."

Getting the atoms into an entangled state more quickly would be a potential advantage in any practical application, not least because entanglement can be fleeting.

When a group of atoms is entangled, the quantum state of each one is bound up with the others so that the entire system possesses a single quantum state. This connection can exist even if the atoms are separated and completely isolated from one another (giving rise to Einstein's famous description of it as "spooky action at a distance"), but entanglement is also quite a fragile condition. The difficulty of maintaining it among large numbers of atoms has slowed the development of entanglement-based technologies such as quantum computers.

"Entangled states tend to decohere and go back to being a bunch of ordinary independent atoms," Gorshkov said. "People knew how to create entanglement, but we looked for a way to do it faster."

If the method can be experimentally demonstrated, it could give a quantum computer's processor additional time so it can outpace decoherence, which threatens to make a computation fall apart before the qubits can finish their work. It would also reduce the uncertainty if used in sensing applications.

"We think this is a practical way to increase the speed of entanglement," Gorshkov said. "It was cool enough to patent, so we hope it proves commercially useful to someone."

Research paper

TIME AND SPACE
Where did those electrons go? X-ray measurements solve decades-old mystery
Ithaca NY (SPX) Nov 08, 2017
The concept of "valence" - the ability of a particular atom to combine with other atoms by exchanging electrons - is one of the cornerstones of modern chemistry and solid-state physics. Valence controls crucial properties of molecules and materials, including their bonding, crystal structure, and electronic and magnetic properties. Four decades ago, a class of materials called "mixed ... read more

Related Links
National Institute of Standards and Technology
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Cancer cells destroyed with dinosaur extinction metal

General Atomics awarded $8.8M contract for low power laser demonstrator

Cheyenne Mountain sees better satellite picture

Tech increases microfluidic research data output 100-fold

TIME AND SPACE
SES GS Awarded US Government Satellite Solutions Contract

16th SPCS Defenders of critical satellite communications

First order for Elta ELK-1882T SATCOM network system

NRL clarifies valley polarization for electronic and optoelectronic technologies

TIME AND SPACE
TIME AND SPACE
Better rubidium clocks increase BeiDou satnav accuracy

China launches two BeiDou-3 navigation satellites on single carrier rocket

Airobot supplies positioning technology to single largest container terminal in Europe

Galileo in place for launch: then there were four

TIME AND SPACE
NASA Embraces Urban Air Mobility, Calls for Market Study

Lockheed test pilot reaches 100 hours in proposed 5th generation trainer

Taiwan grounds Mirage jets after plane goes missing

Lockheed contracted to modernize P-3B aircraft for Greece

TIME AND SPACE
Highly flexible organic flash memory for foldable and disposable electronics

University of Utah researchers develop milestone for ultra-fast communications and computing

NREL research yields significant thermoelectric performance

How a $10 microchip turns 2-D ultrasound machines to 3-D imaging devices

TIME AND SPACE
Warm Air Helped Make 2017 Ozone Hole Smallest Since 1988

NASA Satellite Tracks Ozone Pollution by Monitoring Its Key Ingredients

FIMI completes control acquisition transaction in IAI's ImageSat

Vega to launch an Earth observation satellite for the Kingdom of Morocco

TIME AND SPACE
Schools shut amid health emergency as smog blankets India's capital

Molybdenum in Wisconsin wells not from coal ash

Are elevated levels of mercury in the American dipper due to run-of-river dams?

Survival of coral reefs depends on pollution cuts: study









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.