Space Industry and Business News  
NIST Atom Interferometry Displays New Quantum Tricks

Atoms interfering with themselves. After ultracold atoms are maneuvered into superpositions -- each one located in two places simultaneously -- they are released to allow interference of each atom's two "selves." They are then illuminated with light, which casts a shadow, revealing a characteristic interference pattern, with red representing higher atom density. The variations in density are caused by the alternating constructive and destructive interference between the two "parts" of each atom, magnified by thousands of atoms acting in unison. Credit: NIST
by Staff Writers
Washington DC (SPX) May 28, 2007
Physicists at the National Institute of Standards and Technology (NIST) have demonstrated a novel way of making atoms interfere with each other, recreating a famous experiment originally done with light while also making the atoms do things that light just won't do. Their experiments showcase some of the extraordinary behavior taken for granted in the quantum world-atoms acting like waves and appearing in two places at once, for starters-and demonstrate a new technique that could be useful in quantum computing with neutral atoms and further studies of atomic hijinks.

The NIST experiments, described in Physical Review Letters, recreate the historic "double-slit" experiment in which light is directed through two separate openings and the two resulting beams interfere with each other, creating a striped pattern.

That experiment is a classic demonstration of light behaving like a wave, and the general technique, called interferometry, is used as a measurement tool in many fields. The NIST team used atoms, which, like light, can behave like particles or waves, and made the wave patterns interfere, or, in one curious situation, not.

Atom interferometers have been made before, but the NIST technique introduces some new twists. The researchers trap about 20,000 ultracold rubidium atoms with optical lattices, a lacework of light formed by three pairs of infrared laser beams that sets up an array of energy "wells," shaped like an egg carton, that trap the atoms.

The lasers are arranged to create two horizontal lattices overlapping like two mesh screens, one twice as fine as the other in one dimension. If one atom is placed in each site of the wider lattice, and those lasers are turned off while the finer lattice is activated, then each site is split into two wells, about 400 nanometers apart.

Under the rules of the quantum world, the atom doesn't choose between the two sites but rather assumes a "superposition," located in both places simultaneously. Images reveal a characteristic pattern as the two parts of the single superpositioned atom interfere with each other. (The effect is strong enough to image because this is happening to thousands of atoms simultaneously-see image.)

Everything changes when two atoms are placed in each site of the wider lattice, and those sites are split in two. The original atom pair is now in a superposition of three possible arrangements: both atoms on one site, both on the other, and one on each.

In the two cases when both atoms are on a single site, they interact with each other, altering the interference pattern-an effect that does not occur with light. The imbalance among the three arrangements creates a strobe-like effect. Depending on how long the atoms are held in the lattice before being released to interfere, the interference pattern flickers on (with stripes) and off (no stripes).

A similar "collapse and revival" of an interference pattern was seen in similar experiments done earlier in Germany, but that work did not confine a pair of atoms to a single pair of sites. The NIST experiments allowed researchers to measure the degree to which they had exactly one or exactly two atoms in a single site, and to controllably make exactly two atoms interact. These are important capabilities for making a quantum computer that stores information in individual neutral atoms.

The authors are affiliated with the Joint Quantum Institute, created last year by NIST and the University of Maryland. The research was supported by the Disruptive Technology Office, Office of Naval Research, and National Aeronautics and Space Administration.

J. Sebby-Strabley, B.L. Brown, M. Anderlini, P.J. Lee, W.D. Phillips, J.V. Porto and P.R. Johnson. 2007. Preparing and probing atomic number states with an atom interferometer. Physical Review Letters 98, 200405 (2007).

National Institute of Standards and Technology (NIST)

Related Links
Quantum at NIST
Understanding Time and Space



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Universities Prepare As Physicists Plan To Pop Protons
West Lafayette, IN (SPX) May 23, 2007
The world's largest science experiment, a physics experiment designed to determine the nature of matter, will produce a mountain of data. And because the world's physicists cannot move to the mountain, an army of computer research scientists is preparing to move the mountain to the physicists.







  • Academic Group Releases Plan To Share Power Over Internet Root Zone Keys
  • Satellite Enables Mobile Wireless Broadband Services To Conventional Devices
  • Singapore Airlines Selects Rockwell Collins Satellite Communications
  • Couch Potatoes On Track For Virtual World

  • Arianespace Maintains Launch Campaign Pace As Another Ariane 5 GEO Truck Takes Form
  • Microgravity Enterprises Launches Commercial Payload From New Mexico Spaceport
  • Energia Posts 220 Percent Rise In 2006 Net Profit
  • Russia And ESA Sign Contract For Four Soyuz Launches From Kourou

  • Australia Fears Jet Flight Guilt Could Hit Tourism
  • Nondestructive Testing Keeps Bagram Aircraft Flying
  • New FAA Oceanic Air Traffic System Designed By Lockheed Martin Fully Operational
  • NASA Seeks New Research Proposals

  • Raytheon's MicroLight Radio Selected For UK Army's FIST Program Testing
  • General Dynamics To Provide Ku-Band Satellite On-the-Move Antenna System To Army
  • Raytheon Awarded USAF Global Broadcast Services Contract
  • Newest Navy Aircraft Unveiled by Northrop Grumman

  • Quasicrystals: Somewhere Between Order And Disorder
  • Space Technology Creates Investment Opportunities
  • Pitt Researchers Create New Form Of Matter
  • A Not-So-Heavy Metal As Electrical Conductivity In Textiles Becomes Available

  • Hall Appoints Feeney To Top GOP Position On Space And Aeronautics Subcommittee
  • Dodgen Joins Northrop Grumman As Vice President Of Strategy For Missile Systems Business
  • Townsend To Lead Ball Aerospace Exploration Systems In Huntsville
  • NASA Nobel Prize Recipient To Lead Chief Scientist Office

  • Tracking A Hot Spot In The Center Of The Biggest Ocean On Earth
  • MetOp-A Takes Up Service
  • General Dynamics Awarded Contract For NASA's Landsat Data Continuity Mission Study
  • ESA Presents The Sharpest Ever Satellite Map Of Earth

  • Russian Satellite Navigation Devices On Sale This Year
  • GNSS And ESA Sign Cooperation Agreement For Satellite Navigation Technologies
  • Putin Makes Glonass Navigation System Free For Customers
  • EU Sees Public Money Saving Galileo From Drifting Off Course

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement