Space Industry and Business News  
EARTH OBSERVATION
NASA's small spacecraft produces first 883-gigahertz global ice-cloud map
by Lori Keesey for GSFC News
Greenbelt MD (SPX) Jan 31, 2018

IceCube Principal Investigator Dong Wu set out to demonstrate a commercial 883-Gigahertz radiometer in space, but ended up getting much more: the world's first ice-cloud map in that frequency. Here he is pictured holding the instrument.

A bread loaf-sized satellite has produced the world's first map of the global distribution of atmospheric ice in the 883-Gigahertz band, an important frequency in the submillimeter wavelength for studying cloud ice and its effect on Earth's climate.

IceCube - the diminutive spacecraft that deployed from the International Space Station in May 2017- has demonstrated-in-space a commercial 883-Gigahertz radiometer developed by Virginia Diodes Inc., or VDI, of Charlottesville, Virginia, under a NASA Small Business Innovative Research contract. It is capable of measuring critical atmospheric cloud ice properties at altitudes between 3-9 miles (5 Km-15 Km).

NASA scientists pioneered the use of submillimeter wavelength bands, which fall between the microwave and infrared on the electromagnetic spectrum, to sense ice clouds. However, until IceCube, these instruments had flown only aboard high-altitude research aircraft. This meant scientists could gather data only in areas over which the aircraft flew.

"With IceCube, scientists now have a working submillimeter radiometer system in space at a commercial price," said Dong Wu, a scientist and IceCube principal investigator at NASA's Goddard Space Flight Center in Greenbelt, Maryland.

"More importantly, it provides a global view on Earth's cloud-ice distribution."

Sensing atmospheric cloud ice requires scientists deploy instruments tuned to a broad range of frequency bands. However, it's particularly important to fly submillimeter sensors. This wavelength fills a significant data gap in the middle and upper troposphere where ice clouds are often too opaque for infrared and visible sensors to penetrate. It also reveals data about the tiniest ice particles that can't be detected clearly in other microwave bands.

The Technical Challenge
IceCube's map is a first of its kind and bodes well for future space-based observations of global ice clouds using submillimeter-wave technology, said Wu, whose team built the spacecraft using funding from NASA's Earth Science Technology Office's (ESTO) In-Space Validation of Earth Science Technologies (InVEST) program and NASA's Science Mission Directorate CubeSat Initiative. The team's challenge was making sure the commercial receiver was sensitive enough to detect and measure atmospheric cloud ice using as little power as possible.

Ultimately, the agency wants to infuse this type of receiver into an ice-cloud imaging radiometer for NASA's proposed Aerosol-Cloud-Ecosystems, or ACE, mission. Recommended by the National Research Council, ACE would assess on a daily basis the global distribution of ice clouds, which affect the Earth's emission of infrared energy into space and its reflection and absorption of the Sun's energy over broad areas. Before IceCube, this value was highly uncertain.

"It speaks volumes that our scientists are doing science with a mission that primarily was supposed to demonstrate technology," said Jared Lucey, one of IceCube's instrument engineers. He was one of only a handful of scientists and engineers at Goddard and NASA's Wallops Flight Facility in Virginia who developed IceCube in just two years.

"We met our mission goals and now everything else is bonus," he said.

Multiple Lessons Learned
In addition to demonstrating submillimeter-wave observations from space, the team gained important insights into how to efficiently develop a CubeSat mission, determining which systems to make redundant and which tests to forgo because of limited funds and a short schedule, said Jaime Esper, IceCube's mission systems designer and technical project manager at Goddard.

"It wasn't an easy task," said Negar Ehsan, IceCube's instrument system lead.

"It was a low-budget project" that required the team to develop both an engineering test unit and a flight model in a relatively short period of time. In spite of the challenges, the team delivered the VDI-provided instrument on time and budget.

"We demonstrated for the first time 883-Gigahertz observations in space and proved that the VDI-provided system works appropriately," she said.

"It was rewarding."
The team used commercial off-the-shelf components, including VDI's radiometer. The components came from multiple commercial providers and didn't always work together harmoniously, requiring engineering. The team not only integrated the radiometer to the spacecraft, but also built spacecraft ground-support systems and conducted thermal-vacuum, vibration, and antenna testing at Goddard and Wallops.

"IceCube isn't perfect," Wu conceded, referring to noise or slight errors in the radiometer's data.

"However, we can make a scientifically useful measurement. We came away with a lot of lessons learned from this CubeSat project, and next time engineers can build it much more quickly."

"This is a different mission model for NASA," Wu continued.

"Our principal goal was to show this small mission could be done. The question was, could we can get useful science and advance space technology with a low-cost CubeSat developed under an effective government-commercial partnership. I believe the answer is yes."

Small satellites, including CubeSats, are playing an increasingly larger role in exploration, technology demonstration, scientific research and educational investigations at NASA, including: planetary space exploration; Earth observations; fundamental Earth and space science; and developing precursor science instruments like cutting-edge laser communications, satellite-to-satellite communications and autonomous movement capabilities.

NASA ESTO supports InVEST missions like IceCube and technologies at NASA centers, industry and academia to develop, refine and demonstrate new methods for observing Earth from space, from information systems to new components and instruments.

For more Goddard technology news visit here
Related Links
NASA Earth Science Technology Office
Earth Observation News - Suppiliers, Technology and Application


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


EARTH OBSERVATION
NASA's GOLD powers on for the first time
Greenbelt MD (SPX) Jan 30, 2018
NASA's Global-scale Observations of the Limb and Disk, or GOLD, mission powered on the GOLD instrument for the first time after launch on Jan. 28, 7:23 p.m. EST. The systems engineers successfully established communication with the GOLD instrument and its detector doors opened when commanded. After their tests, the engineers powered off the instrument the same day, at 7:40 p.m. EST. The instrument will remain powered off until its host satellite, SES-14, reaches geostationary orbit and GOLD operat ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
Contact with lost NASA satellite IMAGE confirmed

Studying the Van Allen Belts 60 years after America's first spacecraft

VR helps surgeons to 'see through' tissue and reconnect blood vessels

Pearly material for bendable heating elements

EARTH OBSERVATION
DARPA Seeks to Improve Military Communications with Digital Phased-Arrays at Millimeter Wave

Map of ionospheric disturbances to help improve radio network systems

Grumman to support BACN airborne communications system

Military defense market faces new challenges to acquiring SatCom platforms

EARTH OBSERVATION
EARTH OBSERVATION
Airbus selected by ESA for EGNOS V3 program

Pentagon probes fitness-app use after map shows sensitive sites

China sends twin BeiDou-3 navigation satellites into space

18 satellites in exactEarth's real-time constellation now in service

EARTH OBSERVATION
EFW tapped to provide Apache aviator helmets

Australia welcomes fighter jets home after completing mission in Middle East

Jordan gets more US Black Hawks to bolster defences

Australia warplane catches fire during US training: military

EARTH OBSERVATION
Artificial agent designs quantum experiments

Quantum race accelerates development of silicon quantum chip

Method uses DNA, nanoparticles and lithography to make optically active structures

TU Wien develops new semiconductor processing technology

EARTH OBSERVATION
NASA's small spacecraft produces first 883-gigahertz global ice-cloud map

Smog-forming soils

UK regional weather forecasts could be improved using jet stream data

UK to play a major role in space weather mission concept

EARTH OBSERVATION
These bacteria produce gold by digesting toxic metals

'Oil-like' blobs hit Japan beaches after tanker sinks

High pollution shuts schools in Tehran

High-pressure air injections could aid contaminated soil cleanups









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.