Space Industry and Business News  
STELLAR CHEMISTRY
NASA's fermi discovers the most extreme blazars yet
by Staff Writers
Greenbelt MD (SPX) Jan 31, 2017


Black-hole-powered galaxies called blazars are the most common sources detected by NASA's Fermi. As matter falls toward the supermassive black hole at the galaxy's center, some of it is accelerated outward at nearly the speed of light along jets pointed in opposite directions. When one of the jets happens to be aimed in the direction of Earth, as illustrated here, the galaxy appears especially bright and is classified as a blazar. Image courtesy M. Weiss/CfA. For a larger version of this image please go here. Watch a video on the research here.

NASA's Fermi Gamma-ray Space Telescope has identified the farthest gamma-ray blazars, a type of galaxy whose intense emissions are powered by supersized black holes. Light from the most distant object began its journey to us when the universe was 1.4 billion years old, or nearly 10 percent of its present age.

"Despite their youth, these far-flung blazars host some of the most massive black holes known," said Roopesh Ojha, an astronomer at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "That they developed so early in cosmic history challenges current ideas of how supermassive black holes form and grow, and we want to find more of these objects to help us better understand the process."

Ojha presented the findings Monday, Jan. 30, at the American Physical Society meeting in Washington, and a paper describing the results has been submitted to The Astrophysical Journal Letters.

Blazars constitute roughly half of the gamma-ray sources detected by Fermi's Large Area Telescope (LAT). Astronomers think their high-energy emissions are powered by matter heated and torn apart as it falls from a storage, or accretion, disk toward a supermassive black hole with a million or more times the sun's mass.

A small part of this infalling material becomes redirected into a pair of particle jets, which blast outward in opposite directions at nearly the speed of light. Blazars appear bright in all forms of light, including gamma rays, the highest-energy light, when one of the jets happens to point almost directly toward us.

Previously, the most distant blazars detected by Fermi emitted their light when the universe was about 2.1 billion years old. Earlier observations showed that the most distant blazars produce most of their light at energies right in between the range detected by the LAT and current X-ray satellites, which made finding them extremely difficult.

Then, in 2015, the Fermi team released a full reprocessing of all LAT data, called Pass 8, that ushered in so many improvements astronomers said it was like having a brand new instrument. The LAT's boosted sensitivity at lower energies increased the chances of discovering more far-off blazars.

The research team was led by Vaidehi Paliya and Marco Ajello at Clemson University in South Carolina and included Dario Gasparrini at the Italian Space Agency's Science Data Center in Rome as well as Ojha. They began by searching for the most distant sources in a catalog of 1.4 million quasars, a galaxy class closely related to blazars.

Because only the brightest sources can be detected at great cosmic distances, they then eliminated all but the brightest objects at radio wavelengths from the list. With a final sample of about 1,100 objects, the scientists then examined LAT data for all of them, resulting in the detection of five new gamma-ray blazars.

Expressed in terms of redshift, astronomers' preferred measure of the deep cosmos, the new blazars range from redshift 3.3 to 4.31, which means the light we now detect from them started on its way when the universe was between 1.9 and 1.4 billion years old, respectively.

"Once we found these sources, we collected all the available multiwavelength data on them and derived properties like the black hole mass, the accretion disk luminosity, and the jet power," said Paliya.

Two of the blazars boast black holes of a billion solar masses or more. All of the objects possess extremely luminous accretion disks that emit more than two trillion times the energy output of our sun. This means matter is continuously falling inward, corralled into a disk and heated before making the final plunge to the black hole.

"The main question now is how these huge black holes could have formed in such a young universe," said Gasparrini. "We don't know what mechanisms triggered their rapid development."

In the meantime, the team plans to continue a deep search for additional examples.

"We think Fermi has detected just the tip of the iceberg, the first examples of a galaxy population that previously has not been detected in gamma rays," said Ajello.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Goddard Space Flight Center
Stellar Chemistry, The Universe And All Within It






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Both push and pull drive our galaxy's race through space
Jerusalem, Israel (SPX) Jan 31, 2017
Although we can't feel it, we're in constant motion: the earth spins on its axis at about 1,600 km/h; it orbits around the sun at about 100,000 km/h; the sun orbits our Milky Way galaxy at about 850,000 km/h; and the Milky Way galaxy and its companion galaxy Andromeda are moving with respect to the expanding universe at roughly 2 million km/h (630 km per second). But what is propelling the Milky ... read more


STELLAR CHEMISTRY
NASA's New Shape-Shifting Radiator Inspired by Origami

Space Traffic Management

Japan 'space junk' collector in trouble

Anatomy of a debris incident

STELLAR CHEMISTRY
Airbus provides satcom for EU security missions in Mali, Niger and Somalia

Flat-panel SATCOM for civilian-armored vehicles

Japan launches satellite to modernise military communications

Phasor teams with Thales to develop advanced broadband Smart Terminal

STELLAR CHEMISTRY
STELLAR CHEMISTRY
India's Satnav Goes Out of Whack as Orbiting Atomic Clocks Break

First-ever GPS data release to boost space-weather science

NASA space radio could change how flights are tracked worldwide

ISRO to Launch Standby Navigation Satellite to Replace IRNSS-1A

STELLAR CHEMISTRY
Pentagon chief orders review of F-35 fighter program

Lockheed completes inlet coating repair on F-22

Advanced robotic bat's flight characteristics simulates the real thing

State Dept. approves $525 million aerostat sale to Saudi Arabia

STELLAR CHEMISTRY
Atomic-level sensors enable measurements of electric field within a chip

The world's first heat-driven transistor

Apple legal fight with Qualcomm spreads to China

Electron movement on helium may impact the future of quantum computing

STELLAR CHEMISTRY
Research journey to the center of the Earth

Wind satellite heads for final testing

NASA Makes an EPIC Update to Website for Daily Earth Pics

Subscale Glider Could Assist in Weather Studies, Prediction

STELLAR CHEMISTRY
Philippines closes 23 mines over damage to environment

Increasing factory and auto emissions disrupt natural cycle in East China Sea

Toxic mercury in aquatic life could spike with greater land runoff

Synthetic chemicals: Ignored agents of global change









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.