Space Industry and Business News  
STELLAR CHEMISTRY
NASA's Roman Mission to probe cosmic secrets using exploding stars
by Ashley Balzer for GSFC News
Greenbelt MD (SPX) May 27, 2021

stock illustration only

NASA's upcoming Nancy Grace Roman Space Telescope will see thousands of exploding stars called supernovae across vast stretches of time and space. Using these observations, astronomers aim to shine a light on several cosmic mysteries, providing a window onto the universe's distant past and hazy present.

Roman's supernova survey will help clear up clashing measurements of how fast the universe is currently expanding, and even provide a new way to probe the distribution of dark matter, which is detectable only through its gravitational effects. One of the mission's primary science goals involves using supernovae to help pin down the nature of dark energy - the unexplained cosmic pressure that's speeding up the expansion of the universe.

Space's biggest mystery
"Dark energy makes up the majority of the cosmos, but we don't actually know what it is," said Jason Rhodes, a senior research scientist at NASA's Jet Propulsion Laboratory in Southern California. "By narrowing down possible explanations, Roman could revolutionize our understanding of the universe - and dark energy is just one of the many topics the mission will explore!"

Roman will use multiple methods to investigate dark energy. One involves surveying the sky for a special type of exploding star, called a type Ia supernova.

Many supernovae occur when massive stars run out of fuel, rapidly collapse under their own weight, and then explode because of strong shock waves that propel out of their interiors. These supernovae occur about once every 50 years in our Milky Way galaxy. But evidence shows that type Ia supernovae originate from some binary star systems that contain at least one white dwarf - the small, hot core remnant of a Sun-like star. Type Ia supernovae are much rarer, happening roughly once every 500 years in the Milky Way.

In some cases, the dwarf may siphon material from its companion. This ultimately triggers a runaway reaction that detonates the thief once it reaches a specific point where it has gained so much mass that it becomes unstable. Astronomers have also found evidence supporting another scenario, involving two white dwarfs that spiral toward each other until they merge. If their combined mass is high enough that it leads to instability, they, too, may produce a type Ia supernova.

These explosions peak at a similar, known intrinsic brightness, making type Ia supernovae so-called standard candles - objects or events that emit a specific amount of light, allowing scientists to find their distance with a straightforward formula. Because of this, astronomers can determine how far away the supernovae are by simply measuring how bright they appear.

Astronomers will also use Roman to study the light of these supernovae to find out how quickly they appear to be moving away from us. By comparing how fast they're receding at different distances, scientists will trace cosmic expansion over time. This will help us understand whether and how dark energy has changed throughout the history of the universe.

"In the late 1990s, scientists discovered that the expansion of the universe was speeding up using dozens of type Ia supernovae," said Daniel Scolnic, an assistant professor of physics at Duke University in Durham, North Carolina, who is helping design Roman's supernova survey. "Roman will find them by the thousands, and much farther away than the majority of those we've seen so far."

Previous type Ia supernova surveys have concentrated on the relatively nearby universe, largely due to instrument limitations. Roman's infrared vision, gigantic field of view, and exquisite sensitivity will dramatically extend the search, pulling the cosmic curtains far enough aside to allow astronomers to spot thousands of distant type Ia supernovae.

The mission will study dark energy's influence in detail over more than half of the universe's history, when it was between about four and 12 billion years old. Exploring this relatively unprobed region will help scientists add crucial pieces to the dark energy puzzle.

"Type Ia supernovae are among the most important cosmological probes we have, but they're hard to see when they're far away," Scolnic said. "We need extremely precise measurements and an incredibly stable instrument, which is exactly what Roman will provide."

Hubble constant hubbub
In addition to providing a cross-check with the mission's other dark energy surveys, Roman's type Ia supernova observations could help astronomers examine another mystery. Discrepancies keep popping up in measurements of the Hubble constant, which describes how fast the universe is currently expanding.

Predictions based on early universe data, from about 380,000 years after the big bang, indicate that the cosmos should currently expand at about 42 miles per second (67 kilometers per second) for every megaparsec of distance (a megaparsec is about 3.26 million light-years). But measurements of the modern universe indicate faster expansion, between roughly 43 to 47 miles per second (70 to 76 kilometers per second) per megaparsec.

Roman will help by exploring different potential sources of these discrepancies. Some methods to determine how fast the universe is now expanding rely on type Ia supernovae. While these explosions are remarkably similar, which is why they're valuable tools for gauging distances, small variations do exist. Roman's extensive survey could improve their use as standard candles by helping us understand what causes the variations.

The mission should reveal how the properties of type Ia supernovae change with age, since it will view them across such a vast sweep of cosmic history. Roman will also spot these explosions in various locations in their host galaxies, which could offer clues to how a supernova's environment alters its explosion.

Illuminating dark matter
In a 2020 paper, a team led by Zhongxu Zhai, a postdoctoral research associate at Caltech/IPAC in Pasadena, California, showed that astronomers will be able to glean even more cosmic information from Roman's supernova observations.

"Roman will have to look through enormous stretches of the universe to see distant supernovae," said Yun Wang, a senior research scientist at Caltech/IPAC and a co-author of the study. "A lot can happen to light on such long journeys across space. We've shown that we can learn a lot about the structure of the universe by analyzing how light from type Ia supernovae has been bent as it traveled past intervening matter."

Anything with mass warps the fabric of space-time. Light travels in a straight line, but if space-time is bent - which happens near massive objects - light follows the curve. When we look at distant type Ia supernovae, the warped space-time around intervening matter - such as individual galaxies or clumps of dark matter - can magnify the light from the more distant explosion.

By studying this magnified light, scientists will have a new way to probe how dark matter is clustered throughout the universe. Learning more about the matter that makes up the cosmos will help scientists refine their theoretical model of how the universe evolves.

By charting dark energy's behavior across cosmic history, homing in on how the universe is expanding today, and providing more information on mysterious dark matter, the Roman mission will deliver an avalanche of data to astronomers seeking to solve these and other longstanding problems. With its ability to help solve so many cosmic mysteries, Roman will be one of the most important tools for studying the universe we've ever built.


Related Links
Roman Space Telescope
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Slew of dwarf galaxies had simultaneous 'baby boom' of new stars
New Brunswick NJ (SPX) May 25, 2021
Three dozen dwarf galaxies far from each other had a simultaneous "baby boom" of new stars, an unexpected discovery that challenges current theories on how galaxies grow and may enhance our understanding of the universe. Galaxies more than 1 million light-years apart should have completely independent lives in terms of when they give birth to new stars. But galaxies separated by up to 13 million light-years slowed down and then simultaneously accelerated their birth rate of stars, according to a R ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Alpha Data Launches new Space Development Kit

Xplore opens satellite manufacturing facility to advance satellite production

Astroscale UK to develop space debris removal technology innovations with OneWeb

Air Force debuts virtual command and control platform

STELLAR CHEMISTRY
Bad connections: US-China defense relations mired in call dispute

SES Government Solutions provides medium earth orbit satellite services for combatant command

STPSat-6 safely arrives in Florida

Hughes and OneWeb to demonstrate LEO services for Arctic Region on behalf of US Air Force

STELLAR CHEMISTRY
STELLAR CHEMISTRY
Global navigation satellite system technology needs proper protection

Satellite navigation, positioning services valued at Y400 BN

Beidou has grown into world-class navigation system

BDS-3 system facilitates public transportation in east China's Nanchang

STELLAR CHEMISTRY
NASA tests system for aircraft positioning in supersonic flight

91 European airports vow to be CO2 neutral by 2030

JPALS landing system reaches initial operational capability

Air Force, Lockheed start F-16 production for foreign sales in South Carolina

STELLAR CHEMISTRY
MIT turns "magic" material into versatile electronic devices

Advance may enable "2D" transistors for tinier microchip components

DLR teams up with industry to develop German quantum computers

Lessons from 2011 disaster help Toyota ride out chip shortage

STELLAR CHEMISTRY
Oceanographic research satellite launched

First detailed images from the Pleiades Neo 3 satellite

NASA Earth System Observatory to help address, mitigate climate change

Ozone-depleting chemicals may spend less time in the atmosphere than previously thought

STELLAR CHEMISTRY
Effects of natural noise pollution on animals similar to noise from humans

Excess nitrogen has made sargassum the world's largest harmful algal bloom

Pandemic mask mountain sets new recycling challenge

Notre-Dame's square closed over lead pollution risks









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.