Space Industry and Business News  
TIME AND SPACE
NASA's NICER Mission Maps 'Light Echoes' of New Black Hole
by Jeanette Kazmierczak for GSFC News
Greenbelt MD (SPX) Feb 01, 2019

The NICER instrument installed on the International Space Station, as captured by a high-definition external camera on Oct. 22, 2018.

Scientists have charted the environment surrounding a stellar-mass black hole that is 10 times the mass of the Sun using NASA's Neutron star Interior Composition Explorer (NICER) payload aboard the International Space Station. NICER detected X-ray light from the recently discovered black hole, called MAXI J1820+070 (J1820 for short), as it consumed material from a companion star. Waves of X-rays formed "light echoes" that reflected off the swirling gas near the black hole and revealed changes in the environment's size and shape.

"NICER has allowed us to measure light echoes closer to a stellar-mass black hole than ever before," said Erin Kara, an astrophysicist at the University of Maryland, College Park and NASA's Goddard Space Flight Center in Greenbelt, Maryland, who presented the findings at the 233rd American Astronomical Society meeting in Seattle.

"Previously, these light echoes off the inner accretion disk were only seen in supermassive black holes, which are millions to billions of solar masses and undergo changes slowly. Stellar black holes like J1820 have much lower masses and evolve much faster, so we can see changes play out on human time scales."

J1820 is located about 10,000 light-years away toward the constellation Leo. The companion star in the system was identified in a survey by ESA's (European Space Agency) Gaia mission, which allowed researchers to estimate its distance. Astronomers were unaware of the black hole's presence until March 11, 2018, when an outburst was spotted by the Japan Aerospace Exploration Agency's Monitor of All-sky X-ray Image (MAXI), also aboard the space station. J1820 went from a totally unknown black hole to one of the brightest sources in the X-ray sky over a few days. NICER moved quickly to capture this dramatic transition and continues to follow the fading tail of the eruption.

"NICER was designed to be sensitive enough to study faint, incredibly dense objects called neutron stars," said Zaven Arzoumanian, the NICER science lead at Goddard and a co-author of the paper. "We're pleased at how useful it's also proven in studying these very X-ray-bright stellar-mass black holes."

A black hole can siphon gas from a nearby companion star into a ring of material called an accretion disk. Gravitational and magnetic forces heat the disk to millions of degrees, making it hot enough to produce X-rays at the inner parts of the disk, near the black hole. Outbursts occur when an instability in the disk causes a flood of gas to move inward, toward the black hole, like an avalanche. The causes of disk instabilities are poorly understood.

Above the disk is the corona, a region of subatomic particles around 1 billion degrees Celsius (1.8 billion degrees Fahrenheit) that glows in higher-energy X-rays. Many mysteries remain about the origin and evolution of the corona. Some theories suggest the structure could represent an early form of the high-speed particle jets these types of systems often emit.

Astrophysicists want to better understand how the inner edge of the accretion disk and the corona above it change in size and shape as a black hole accretes material from its companion star. If they can understand how and why these changes occur in stellar-mass black holes over a period of weeks, scientists could shed light on how supermassive black holes evolve over millions of years and how they affect the galaxies in which they reside.

One method used to chart those changes is called X-ray reverberation mapping, which uses X-ray reflections in much the same way sonar uses sound waves to map undersea terrain. Some X-rays from the corona travel straight toward us, while others light up the disk and reflect back at different energies and angles.

X-ray reverberation mapping of supermassive black holes has shown that the inner edge of the accretion disk is very close to the event horizon, the point of no return. The corona is also compact, lying closer to the black hole rather than over much of the accretion disk. Previous observations of X-ray echoes from stellar black holes, however, suggested the inner edge of the accretion disk could be quite distant, up to hundreds of times the size of the event horizon. The stellar-mass J1820, however, behaved more like its supermassive cousins.

As they examined NICER's observations of J1820, Kara's team saw a decrease in the delay, or lag time, between the initial flare of X-rays coming directly from the corona and the flare's echo off the disk, indicating that the X-rays traveled shorter and shorter distances before they were reflected. From 10,000 light-years away, they estimated that the corona contracted vertically from roughly 100 to 10 miles - that's like seeing something the size of a blueberry shrink to something the size of a poppy seed at the distance of Pluto.

"This is the first time that we've seen this kind of evidence that it's the corona shrinking during this particular phase of outburst evolution," said co-author Jack Steiner, an astrophysicist at the Massachusetts Institute of Technology's Kavli Institute for Astrophysics and Space Research in Cambridge. "The corona is still pretty mysterious, and we still have a loose understanding of what it is. But we now have evidence that the thing that's evolving in the system is the structure of the corona itself."

To confirm the decreased lag time was due to a change in the corona and not the disk, the researchers used a signal called the iron K line created when X-rays from the corona collide with iron atoms in the disk, causing them to fluoresce. Time runs slower in stronger gravitational fields and at higher velocities, as stated in Einstein's theory of relativity. When the iron atoms closest to the black hole are bombarded by light from the core of the corona, the X-ray wavelengths they emit get stretched because time is moving slower for them than for the observer (in this case, NICER).

Kara's team discovered that J1820's stretched iron K line remained constant, which means the inner edge of the disk remained close to the black hole - similar to a supermassive black hole. If the decreased lag time was caused by the inner edge of the disk moving even further inward, then the iron K line would have stretched even more.

These observations give scientists new insights into how material funnels in to the black hole and how energy is released in this process.

"NICER's observations of J1820 have taught us something new about stellar-mass black holes and about how we might use them as analogs for studying supermassive black holes and their effects on galaxy formation," said co-author Philip Uttley, an astrophysicist at the University of Amsterdam. "We've seen four similar events in NICER's first year, and it's remarkable. It feels like we're on the edge of a huge breakthrough in X-ray astronomy."

NICER is an Astrophysics Mission of Opportunity within NASA's Explorer program, which provides frequent flight opportunities for world-class scientific investigations from space utilizing innovative, streamlined and efficient management approaches within the heliophysics and astrophysics science areas. NASA's Space Technology Mission Directorate supports the SEXTANT component of the mission, demonstrating pulsar-based spacecraft navigation.

A paper describing the findings, led by Kara, appeared in the Jan. 10 issue of Nature and is available online.

Research paper


Related Links
Neutron star Interior Composition Explorer (NICER)
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
How black holes power plasma jets
New York NY (SPX) Jan 30, 2019
Black holes consume everything that falls within their reach, yet astronomers have spotted jets of particles fleeing from black holes at nearly the speed of light. New computer simulations have revealed what gives these particles such speed: cosmic robbery. The particle escapees steal some of the spinning black hole's rotational energy, accomplishing this through two main mechanisms involving magnetic fields, the simulations' creators report in the January 25 issue of Physical Review Letters. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Maxar/SSL ends participation in DARPA's robotic satellites servicing program

Observers Puzzled by Mysterious 'Empty Trash Bag' Orbiting Earth

Green alternative to PET could be even greener

The 'stuff' of the universe keeps changing

TIME AND SPACE
Lockheed Martin to develop cyber electronic warfare pod for UAVs

Britain to spend $1.3M for satellite antennas in light of Brexit

Reflectarray Antenna offers high performance in small package: DARPA

BAE signs $79.8M contract with Navy for Pacific comms support

TIME AND SPACE
TIME AND SPACE
China to launch 10 BeiDou satellites in 2019

Magnetic North's erratic behavior forces update to global navigation system

US Air Force contracts Lockheed Martin to continue GPS ground control supprt

GPS-denied navigation on small unmanned helicopters

TIME AND SPACE
Boeing bullish on 2019 despite US-China tensions

Lockheed Martin and Netherlands mark rollout of 1st Dutch Operational F-35s

Researchers wing it in mimicking evolution to discover best shape for flight

Boeing awarded $56.7M for Navy's T-45 aircraft support

TIME AND SPACE
Waterproof graphene electronic circuits

New quantum system could help design better spintronics

Three-atom device shows role of quantum effects in thermodynamics

Innovative technique could pave way for new generation of flexible electronic components

TIME AND SPACE
Earth-i Updates Satellite Map of Queensland, Australia

Extreme rainfall events are connected across the world

River levels tracked from space

Russia to launch Arctic weather satellite

TIME AND SPACE
Brazil dam disaster: mourning and dead fish along river of mud

'They always come back': French Guiana battles illegal gold hunters

Toiling in Delhi's toxic smog

Hundreds of schools to shut as toxic smog chokes Bangkok









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.