Space Industry and Business News  
OUTER PLANETS
NASA's Juno Mission Detects Jupiter Wave Trains
by Staff Writers
Pasadena CA (JPL) Oct 24, 2018

Three waves can be seen in this excerpt of a JunoCam image taken on Feb. 2, 2017, during Juno's fourth flyby of Jupiter. The region imaged in this picture is part of the visibly dark band just north of Jupiter's equator known as the North Equatorial Belt. Image credit: NASA/JPL-Caltech/SwRI/MSSS/JunoCam

Massive structures of moving air that appear like waves in Jupiter's atmosphere were first detected by NASA's Voyager missions during their flybys of the gas-giant world in 1979. The JunoCam camera aboard NASA's Juno mission to Jupiter has also imaged the atmosphere.

JunoCam data has detected atmospheric wave trains, towering atmospheric structures that trail one after the other as they roam the planet, with most concentrated near Jupiter's equator.

The JunoCam imager has resolved smaller distances between individual wave crests in these trains than ever seen before. This research provides valuable information on both the dynamics of Jupiter's atmosphere and its structure in the regions underneath the waves.

"JunoCam has counted more distinct wave trains than any other spacecraft mission since Voyager," said Glenn Orton, a Juno scientist from NASA's Jet Propulsion Laboratory in Pasadena, California.

"The trains, which consist of as few as two waves and as many as several dozen, can have a distance between crests as small as about 40 miles (65 kilometers) and as large as about 760 miles (1,200 kilometers). The shadow of the wave structure in one image allowed us to estimate the height of one wave to be about 6 miles (10 kilometers) high."

Most of the waves are seen in elongated wave trains, spread out in an east-west direction, with wave crests that are perpendicular to the orientation of the train. Other fronts in similar wave trains tilt significantly with respect to the orientation of the wave train, and still other wave trains follow slanted or meandering paths.

"The waves can appear close to other Jovian atmospheric features, near vortices or along flow lines, and others exhibit no relationship with anything nearby," said Orton.

"Some wave trains appear as if they are converging, and others appear to be overlapping, possibly at two different atmospheric levels. In one case, wave fronts appear to be radiating outward from the center of a cyclone."

Although analysis is ongoing, most waves are expected to be atmospheric gravity waves - up-and-down ripples that form in the atmosphere above something that disturbs air flow, such as a thunderstorm updraft, disruptions of flow around other features, or from some other disturbance that JunoCam does not detect.

The JunoCam instrument is uniquely qualified to make such a discovery. JunoCam is a color, visible-light camera which offers a wide-angle field of view designed to capture remarkable pictures of Jupiter's poles and cloud tops.

As Juno's eyes, it helps provide context for the spacecraft's other instruments. JunoCam was included on the spacecraft primarily for public engagement purposes, although its images also are helpful to the science team.

Juno launched on Aug. 5, 2011, from Cape Canaveral, Florida, and arrived in orbit around Jupiter on July 4, 2016. To date, it has completed 15 science passes over Jupiter. Juno's 16th science pass will be on Oct. 29.

During these flybys, Juno is probing beneath the obscuring cloud cover of Jupiter and studying its auroras to learn more about the planet's origins, structure, atmosphere and magnetosphere.


Related Links
Juno at JPL
The million outer planets of a star called Sol


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


OUTER PLANETS
Icy moon of Jupiter, Ganymede, shows evidence of past strike-slip faulting
Manoa HI (SPX) Oct 17, 2018
A recently published study led by researchers at the University of Hawai'i at Manoa School of Ocean and Earth Science and Technology reveals Ganymede, an icy moon of Jupiter, appears to have undergone complex periods of geologic activity, specifically strike-slip tectonism, as is seen in Earth's San Andreas fault. This is the first study to exhaustively consider the role of strike-slip tectonism in Ganymede's geologic history. Plate tectonics is the process on Earth that has created many familiar ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

OUTER PLANETS
Orbit Logic's scheduling software selected for NASA satellite servicing mission

Bursting the clouds for better communication

Penetrating the soil's surface with radar

Lockheed Martin reaches technical milestone for Long Range Discrimination Radar

OUTER PLANETS
Military communications satellite online in orbit following launch

Navistar contracted by Army for MRAP tech support

Aerojet Rocketdyne powers 4th AEHF-4 to orbital position

Scientists want to blast holes in clouds with laser to boost satellite communication

OUTER PLANETS
OUTER PLANETS
China launches twin BeiDou-3 satellites

Army researchers' technique locates robots, soldiers in GPS-challenged areas

Boeing to provide technical work on JDAM GPS-guided bombs

New Study Tracks Hurricane Harvey Stormwater with GPS

OUTER PLANETS
Indonesia $200m in arrears on fighter project: S. Korea

Dandelion seeds reveal newly discovered form of natural flight

Merging mathematical and physical models toward building a more perfect flying vehicle

Rockwell Collins wins bid for Navy aircraft repair

OUTER PLANETS
Electrical enhancement: Engineers speed up electrons in semiconductors

Printed 3D supercapacitor electrode breaks records in lab tests

First proof of quantum computer advantage

New memristor boosts accuracy and efficiency for neural networks on an atomic scale

OUTER PLANETS
Zooming in on Mexico's landscape

Government of Canada to invest $7.2M in exactEarth

Earth observation data market to reach $2.4B

GOES-17 begins move to its new operational position

OUTER PLANETS
Plastic piling up in Japan after China waste ban: survey

Delhi holds breath as burning farms herald pollution season

Study: Air pollution deaths in U.S. dropped by half between 1990, 2010

Swim team braves pollution to dive into Gaza waters









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.