Space Industry and Business News  
MARSDAILY
NASA's InSight will study Mars while standing still
by Staff Writers
Pasadena CA (JPL) Oct 25, 2018

This artist's concept depicts NASA's InSight lander after it has deployed its instruments on the Martian surface. Image Credit:NASA/JPL-Caltech

You don't need wheels to explore Mars. After touching down in November, NASA's InSight spacecraft will spread its solar panels, unfold a robotic arm ... and stay put. Unlike the space agency's rovers, InSight is a lander designed to study an entire planet from just one spot.

This sedentary science allows InSight to detect geophysical signals deep below the Martian surface, including marsquakes and heat. Scientists will also be able to track radio signals from the stationary spacecraft, which vary based on the wobble in Mars' rotation. Understanding this wobble could help solve the mystery of whether the planet's core is solid.

Here are five things to know about how InSight conducts its science.

1. InSight Can Measure Quakes Anywhere on the Planet
Quakes on Earth are usually detected using networks of seismometers. InSight has only one - called SEIS (Seismic Experiment for Interior Structure) - so its science team will use some creative measurements to analyze seismic waves as they occur anywhere on the planet.

SEIS will measure seismic waves from marsquakes and meteorite strikes as they move through Mars. The speed of those waves changes depending on the material they're traveling through, helping scientists deduce what the planet's interior is made of.

Seismic waves come in a surprising number of flavors. Some vibrate across a planet's surface, while others ricochet off its center. They also move at different speeds. Seismologists can use each type as a tool to triangulate where and when a seismic event has happened.

This means InSight could have landed anywhere on Mars and, without moving, gathered the same kind of science.

2. InSight's Seismometer Needs Peace and Quiet
Seismometers are touchy by nature. They need to be isolated from "noise" in order to measure seismic waves accurately.

SEIS is sensitive enough to detect vibrations smaller than the width of a hydrogen atom. It will be the first seismometer ever set on the Martian surface, where it will be thousands of times more accurate than seismometers that sat atop the Viking landers.

To take advantage of this exquisite sensitivity, engineers have given SEIS a shell: a wind-and-thermal shield that InSight's arm will place over the seismometer. This protective dome presses down when wind blows over it; a Mylar-and-chainmail skirt keeps wind from blowing in. It also gives SEIS a cozy place to hide away from Mars' intense temperature swings, which can create minute changes in the instrument's springs and electronics.

3. InSight Has a Self-Hammering Nail
Have you ever tried to hammer a nail? Then you know holding it steady is key. InSight carries a nail that also needs to be held steady.

This unique instrument, called HP3 (Heat Flow and Physical Properties Package), holds a spike attached to a long tether. A mechanism inside the spike will hammer it up to 16 feet (5 meters) underground, dragging out the tether, which is embedded with heat sensors.

At that depth, it can detect heat trapped inside Mars since the planet first formed. That heat shaped the surface with volcanoes, mountain ranges and valleys. It may even have determined where rivers ran early in Mars' history.

4. InSight Can Land in a Safe Spot
Because InSight needs stillness - and because it can collect seismic and heat data from anywhere on the planet - the spacecraft is free to land in the safest location possible.

InSight's team selected a location on Mars' equator called Elysium Planitia - as flat and boring a spot as any on Mars. That makes landing just a bit easier, as there's less to crash into, fewer rocks to land on and lots of sunlight to power the spacecraft. The fact that InSight doesn't use much power and should have plenty of sunlight at Mars' equator means it can provide lots of data for scientists to study.

5. InSight Can Measure Mars' Wobble
InSight has two X-band antennas on its deck that make up a third instrument, called RISE (Rotation and Interior Structure Experiment). Radio signals from RISE will be measured over months, maybe even years, to study the tiny "wobble" in the rotation of the planet. That wobble is a sign of whether Mars' core is liquid or solid - a trait that could also shed light on the planet's thin magnetic field.

Collecting detailed data on this wobble hasn't happened since Mars Pathfinder's three-month mission in 1997 (although the Opportunity rover made a few measurements in 2011 while it remained still, waiting out the winter). Every time a stationary spacecraft sends radio signals from Mars, it can help scientists improve their measurements.


Related Links
InSight Mission
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MARSDAILY
The claw game on Mars: NASA InSight plays to win
Pasadena CA (JPL) Oct 19, 2018
If you've ever played the claw machine at an arcade, you know how hard it can be to maneuver the metal "hand" to pick up a prize. Imagine trying to play that game when the claw is on Mars, the objects you're trying to grasp are far more fragile than a stuffed bear and all you have is a stitched-together panorama of the environment you're working in. Oh, and there might be a dust storm. NASA's InSight lander, slated to arrive on Mars Nov. 26, 2018, will be the first mission to use a robotic arm to ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
3D bioprinting technique could create artificial blood vessels, organ tissue

Orbit Logic's scheduling software selected for NASA satellite servicing mission

Penetrating the soil's surface with radar

Air Force contract Ball Aerospace for laser research

MARSDAILY
Navistar contracted by Army for MRAP tech support

Scientists want to blast holes in clouds with laser to boost satellite communication

Military communications satellite online in orbit following launch

Aerojet Rocketdyne powers 4th AEHF-4 to orbital position

MARSDAILY
MARSDAILY
China launches twin BeiDou-3 satellites

Army researchers' technique locates robots, soldiers in GPS-challenged areas

Boeing to provide technical work on JDAM GPS-guided bombs

New Study Tracks Hurricane Harvey Stormwater with GPS

MARSDAILY
Indonesia $200m in arrears on fighter project: S. Korea

Dandelion seeds reveal newly discovered form of natural flight

Merging mathematical and physical models toward building a more perfect flying vehicle

Rockwell Collins wins bid for Navy aircraft repair

MARSDAILY
Printed 3D supercapacitor electrode breaks records in lab tests

Inexpensive chip-based device may transform spectrometry

Announcing the discovery of an atomic electronic simulator

First proof of quantum computer advantage

MARSDAILY
NASA watches airglow, the colors of the upper atmospheric winds

Earth observation data market to reach $2.4B

Zooming in on Mexico's landscape

Government of Canada to invest $7.2M in exactEarth

MARSDAILY
Delhi holds breath as burning farms herald pollution season

Indian court eases firecracker ban even as pollution soars

Uber plans pollution levy on London fares

Study: Air pollution deaths in U.S. dropped by half between 1990, 2010









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.