Space Industry and Business News  
AEROSPACE
NASA's Improved Supersonic Cockpit Display Shows Precise Locations of Sonic Booms
by Matt Kamlet for AFRC News
Edwards AFB CA (SPX) Dec 13, 2016


Flight Test Engineer Jacob Schaefer inspects the Cockpit Interactive Sonic Boom Display Avionics, or CISBoomDA, from the cockpit of his F-18 at NASA's Armstrong Flight Research Center in Edwards, California. Image courtesy NASA Photo / Ken Ulbrich. For a larger version of this image please go here.

NASA pilots flying supersonic aircraft now have a display that tells them exactly where sonic booms are hitting the ground. A series of flights, recently flown at NASA's Armstrong Flight Research Center in Edwards, California, featured a display that allowed NASA research pilots the ability to physically see their sonic footprint on a map as the boom occurred. The series, which marked the second phase of the Cockpit Interactive Sonic Boom Display Avionics project, or CISBoomDA, continued from the project's first phase, where only a flight test engineer could see the display.

With the ability to observe the location of their aircraft's sonic booms, pilots can better keep the loud percussive sounds from disturbing communities on the ground.

Sonic booms occur when an aircraft's speed exceeds Mach 1, the speed of sound, causing an air density change to occur and sending shockwaves away from the aircraft. Upon reaching the ground, those shockwaves are perceived audibly as a sometimes loud, disruptive sonic boom. Civilian aircraft are currently prohibited from flying supersonically over land, to prevent communities on the ground from being startled by sonic booms.

NASA has researched supersonic flight for decades, and is working to identify and develop the methods and tools necessary to mitigate the sonic boom. Recent research projects, such as the Background Oriented Schlieren using Celestial Objects, or BOSCO, and Sonic Booms in Atmospheric Turbulence, or SonicBAT, are helping engineers and researchers accomplish this, through further understanding of how supersonic shockwaves travel through the air.

CISBoomDA project manager Brett Pauer says the display will be a useful tool for supersonic-related projects in the future.

"The display is there to minimize the impact of sonic booms on the ground. Sonic booms generally don't cause damage at higher altitudes, but they can disturb people, and we want to make sure that we are good stewards to the public," said Pauer. "The use of this software allows pilots to maximize their flight, and still not bother people on the ground, if used properly."

NASA's supersonic research projects are helping engineers develop the means to design and build a proposed Low Boom Flight Demonstrator experimental aircraft, or X-plane, as part of the agency's New Aviation Horizons initiative. The X-plane would be designed to demonstrate what NASA believes could be a quieter thump in place of the louder sonic boom. This could, in the future, introduce the opportunity to permit supersonic flight over land.

The display used in the CISBoomDA Phase II flights, however, is not limited to just the proposed X-plane, according to Pauer.

"This isn't just for the Low Boom Flight Demonstrator, it's for any supersonic aircraft. There are several companies that are looking to build supersonic aircraft that wouldn't produce a low boom, and would still be restricted from supersonic flight over land. This would give them a way to show their sonic boom footprint over water," explained Pauer. "So let's say you're flying from Miami to New York. You can see how far off the coast you need to be to not have that boom hit land."

The display used in CISBoomDA Phase II was operated by the flight test engineer in the backseat of a NASA F-18 research aircraft, and was transmitted to the pilot's display in the front seat. The project team integrated a research-quality GPS to feed into the system, updating the positioning software from the aircraft's previous inertial navigation system, improving position accuracy to within 10 to 20 feet.

CISBoomDA principal investigator Ed Haering says the flights were designed to simulate boundaries on the ground, to help pilots practice monitoring the booms, and to keep the booms from impacting potentially populated areas.

"We flew in the High Altitude Supersonic Corridor, which is one place we're allowed to fly supersonically. The sonic boom carpet width, when you are 30,000 feet up, is about 30-miles wide. So we told him to fly as if the boundaries represent places you can't boom past, and he flew to get the carpet to the edge of that boundary, but not past it," Haering said.

The display is able to show the location of sonic booms based on tracking the aircraft's trajectory and altitude, and is founded on an algorithm designed by Ken Plotkin of Wyle Laboratories, who died in 2015.

That algorithm is also being used by two companies, contracted by NASA, to develop similar displays, with more of a predictive element.

Honeywell Aerospace in Phoenix, Arizona, and Rockwell Collins in Cedar Rapids, Iowa, are both working in collaboration with NASA's CISBoomDA project to develop displays with predictive capabilities. While the CISBoomDA display in NASA's F-18 shows the real-time location of sonic booms, the displays being developed by Honeywell and Rockwell Collins, using the same algorithm, are looking to see where sonic boom locations would be on the ground, based on a planned flightpath.

"What Rockwell Collins and Honeywell are developing actually runs on the same algorithm as our display, but uses a predictive capability to show your booms on a proposed flightpath," said Haering. "The pilot can adjust a proposed flightpath to avoid sonic booms in a particular spot, and then lock it in and fly that path."

The display will ultimately be used to help NASA proceed with supersonic research in a way that minimizes disturbance on the ground and provides practice with the future of supersonic technology for pilots such as NASA research pilot Nils Larson.

"Flying with the CISBoomDA display was really interesting," Larson stated. "It was great to have it in the cockpit, and I think it's a valuable tool for the future. As a matter of fact, I've asked to be allowed to start using the display on my proficiency flights, just so I can keep practicing with it."


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Armstrong Flight Research Center, Future Aircraft, Supersonic Flight
Aerospace News at SpaceMart.com






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
AEROSPACE
US approves $7 bn in aircraft sales to Arab allies
Washington (AFP) Dec 8, 2016
The United States on Thursday approved a series of deals worth more than $7 billion to supply military helicopters, planes and missiles to four of its Arab allies. The green light, announced by the State Department, will mark another windfall for plane maker Boeing and other large US defense manufacturers. But it may face opposition from critics of Saudi Arabia and the United Arab Emi ... read more


AEROSPACE
Raytheon to produce additional Air and Missile Defense Radar equipment

U.S. State Dept. approves Sea Giraffe 3D radars for the Philippines

Velodyne LiDAR makes breakthrough for tiny, low cost solid-state LiDAR sensors

Discovery to inspire more radiation-resistant metals

AEROSPACE
Japan to Launch First Military Communications Satellite on January 24

Intelsat General to provide satellite services to RiteNet for US Army network

NSA gives Type1 certification to Harris radio

Upgraded telecommunications network for Marines

AEROSPACE
Russia to face strong competition from China in space launch market

Vega And Gokturk-1A are present for next Arianespace lightweight mission

Antares Rides Again

Four Galileo satellites are "topped off" for Arianespace's milestone Ariane 5 launch from the Spaceport

AEROSPACE
Europe's own satnav, Galileo, due to go live

Lockheed Martin and USAF move ahead with GPS backup ground system upgrade

OGC requests public comment on its Coverage Implementation Schema

Lockheed Martin Advances Modernization of Current GPS Ground Control System for USAF

AEROSPACE
Germany receives first tactical A400M transport from Airbus

US military grounds Osprey planes in Japan after crash

Final sweep for MH370 sea search

Boeing delivers digital flight deck upgrades to NATO fleet

AEROSPACE
Stamping technique creates tiny circuits with electronic ink

Electron highway inside crystal

Further improvement of qubit lifetime for quantum computers

3-D solutions to energy savings in silicon power transistors

AEROSPACE
Revolutions in understanding the ionosphere, Earth's interface to space

Researchers dial in to 'thermostat' in Earth's upper atmosphere

Study of olivine provides new data for measuring earth's surface

A look at the US cold snap from NASA infrared imagery

AEROSPACE
Mosul battle leaving legacy of environmental damage

Beijing issues red alert for severe air pollution

Researchers create new way to trap dangerous gases

Tehran traffic 'unbearable', says police chief









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.