Space Industry and Business News  
TIME AND SPACE
NASA's Deep Space Atomic Clock completes mission
by Ian J. O'Neill for JPL News
Pasadena CA (JPL) Oct 06, 2021

file illustration

Geared toward improving spacecraft navigation, the technology demonstration operated far longer than planned and broke the stability record for atomic clocks in space. For more than two years, NASA's Deep Space Atomic Clock has been pushing the timekeeping frontiers in space. On Sept. 18, 2021, its mission came to a successful end.

The instrument is hosted on General Atomics' Orbital Test Bed spacecraft that was launched aboard the Department of Defense Space Test Program 2 mission June 25, 2019. Its goal: to test the feasibility of using an onboard atomic clock to improve spacecraft navigation in deep space.

Currently, spacecraft rely on ground-based atomic clocks. To measure a spacecraft's trajectory as it travels beyond the Moon, navigators use these timekeepers to precisely track when those signals are sent and received. Because navigators know that radio signals travel at the speed of light (about 186,000 miles per second, or 300,000 kilometers per second), they can use these time measurements to calculate the spacecraft's exact distance, speed, and direction of travel.

But the farther a spacecraft is from Earth, the longer it takes to send and receive signals - from several minutes to a few hours - significantly delaying these calculations. With an onboard atomic clock paired with a navigation system, the spacecraft could immediately calculate where it is and where it is going.

Built by NASA's Jet Propulsion Laboratory in Southern California, the Deep Space Atomic Clock is an ultra-precise, mercury-ion atomic clock encased in a small box that measures about 10 inches (25 centimeters) on each side - roughly the size of a toaster. Designed to survive the rigors of launch and the cold, high-radiation environment of space without its timekeeping performance degrading, the Deep Space Atomic Clock was a technology demonstration intended to carry out technological firsts and fill critical knowledge gaps.

After the instrument completed its one-year primary mission in Earth orbit, NASA extended the mission to collect more data because of its exceptional timekeeping stability. But before the tech demo was powered off on Sept. 18, the mission worked overtime to extract as much data as possible in its final days.

"The Deep Space Atomic Clock mission was a resounding success, and the gem of the story here is that the technology demonstration operated well past its intended operational period," said Todd Ely, principal investigator and project manager at JPL.

The data from the trailblazing instrument will help develop Deep Space Atomic Clock-2, a tech demo that will travel to Venus aboard NASA's Venus Emissivity, Radio Science, InSAR, Topography and Spectroscopy (VERITAS) spacecraft when it launches by 2028. This will be the first test for an atomic clock in deep space and a monumental advancement for increased spacecraft autonomy.

Stability Is Everything
While atomic clocks are the most stable timekeepers on the planet, they still have instabilities that can cause a minuscule lag, or "offset," in the clocks' time versus the actual time. Left uncorrected, these offsets will add up and could lead to large errors in positioning. Fractions of a second could mean the difference between safely arriving at Mars or missing the planet altogether.

Updates can be beamed from Earth to the spacecraft to correct for these offsets. Global Positioning System (GPS) satellites, for example, carry atomic clocks to help us get from point A to B. To make sure they keep the time accurately, updates need to be frequently transmitted to them from the ground. But having to send frequent updates from Earth to an atomic clock in deep space would not be practical and would defeat the purpose of equipping a spacecraft with one.

This is why an atomic clock on a spacecraft exploring deep space would need to be as stable as possible from the get-go, allowing it to be less dependent on Earth to be updated.

"The Deep Space Atomic Clock succeeded in this goal," said JPL's Eric Burt, an atomic clock physicist for the mission. "We have achieved a new record for long-term atomic clock stability in space - more than an order of magnitude better than GPS atomic clocks. This means that we now have the stability to allow for more autonomy in deep space missions and potentially make GPS satellites less dependent on twice-daily updates if they carried our instrument."

In a recent study, the Deep Space Atomic Clock team reported a deviation of less than four nanoseconds after more than 20 days of operation.

Like its predecessor, the Deep Space Atomic Clock-2 will be a tech demo, meaning that VERITAS will not depend on it to fulfill its goals. But this next iteration will be smaller, use less power, and be designed to support a multi-year mission like VERITAS.

"It is a remarkable accomplishment by the team - the technology demonstration has proven to be a robust system in orbit, and we are now looking forward to seeing an improved version go to Venus," said Trudy Kortes, director of technology demonstrations for NASA's Science and Technology Mission Directorate (STMD) at NASA Headquarters in Washington. "This is what NASA does - we develop new technologies and enhance existing ones to advance human and robotic spaceflight. The Deep Space Atomic Clock truly has the potential to transform how we explore deep space."

Jason Mitchell, the director of the Advanced Communications and Navigation Technology Division of NASA's Space Communications and Navigation (SCaN) at the agency's headquarters agreed: "The instrument's performance was truly exceptional and a testament to the capability of the team. Going forward, not only will the Deep Space Atomic Clock enable significant, new operational capabilities for NASA's human and robotic exploration missions, it may also enable deeper exploration of the fundamental physics of relativity, much like the clocks supporting GPS have done."


Related Links
Deep Space Atomic Clock
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
New chip scale atomic clock best yet for extreme environments
Chandler AZ (SPX) Aug 20, 2021
Advanced military platforms, ocean-bottom survey systems and remote sensing applications all require precise timing for mission success. Chip Scale Atomic Clocks (CSACs) ensure stable and accurate timing even when Global Navigation Satellite Systems (GNSS) time signals are unavailable. Helping industrial and military system designers to meet this requirement, Microchip Technology Inc. has announced its new SA65 CSAC, providing precise timing accuracy and stability in extreme environments. Microchi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Urban mining for metals flashes forward

New model simplifies orbital radar trade-off studies for environmental monitoring

Beam diagnostics for future laser wakefield accelerators

In Siberia, a copper mine hopes to become a global energy pivot

TIME AND SPACE
Space Systems Command awards $46.5 million contract for meshONE-Terrestrial

Cesiumastro deploys active phased array experimental satellites

US Space Force to take over SATCOM operations from Army, Navy

Notre Dame to lead $25 million SpectrumX project; first NSF Spectrum Innovation Initiative Center

TIME AND SPACE
TIME AND SPACE
Thales Alenia Space to build prototype EGNOS ground station for ESA

Galileo ground control segment ready for full operational capability

France lops metre off Mont Blanc's official height

Enhanced BeiDou short message service displayed at int'l summit

TIME AND SPACE
NASA issues contracts to mature electrified aircraft propulsion technologies

Zero net emissions by 2050: a huge challenge for airline industry

German 'green' kerosene plant eyes climate-friendlier flights

World airlines commit to 'net zero' CO2 emissions by 2050

TIME AND SPACE
Connecting the dots between material properties and qubit performance

Towards ultra-low-energy exciton electronics

New ergonomic photodetector for the trillion-sensor era

US to press for semiconductor relief at EU tech meeting

TIME AND SPACE
First Copernicus satellite exceeds design working life

Earth from Space: Mackenzie River, Canada

NASA software helps weather forecasting around the globe

NASA selects partners for Geostationary and Extended Observations Sounder Phase A Studies

TIME AND SPACE
Sea pollution after S.Africa riots an 'environmental catastrophe'

'Pollution-sniffing' plane scours Belgium's coast

Almost one-in-three people globally will still be mainly using polluting cooking fuels in 2030, research shows

Europe's industrial air pollution costing hundreds of billions: report









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.