Subscribe free to our newsletters via your
. Space Industry and Business News .




MARSDAILY
NASA's Car-Sized Rover Nears Daring Landing on Mars
by Staff Writers
Pasadena CA (JPL) Jul 17, 2012


The area where NASA's Curiosity rover will land on Aug. 5 PDT (Aug. 6 EDT) has a geological diversity that scientists are eager to investigate, as seen in this false-color map based on data from NASA's Mars Odyssey orbiter. Image credit: NASA/JPL-Caltech/ASU.

NASA's most advanced planetary rover is on a precise course for an early August landing beside a Martian mountain to begin two years of unprecedented scientific detective work. However, getting the Curiosity rover to the surface of Mars will not be easy. "The Curiosity landing is the hardest NASA mission ever attempted in the history of robotic planetary exploration," said John Grunsfeld, associate administrator for NASA's Science Mission Directorate, at NASA Headquarters in Washington.

"While the challenge is great, the team's skill and determination give me high confidence in a successful landing."

The Mars Science Laboratory mission is a precursor for future human missions to Mars. President Obama has set a challenge to reach the Red Planet in the 2030s.

To achieve the precision needed for landing safely inside Gale Crater, the spacecraft will fly like a wing in the upper atmosphere instead of dropping like a rock. To land the 1-ton rover, an airbag method used on previous Mars rovers will not work. Mission engineers at NASA's Jet Propulsion Laboratory in Pasadena, Calif., designed a "sky crane" method for the final several seconds of the flight. A backpack with retro-rockets controlling descent speed will lower the rover on three nylon cords just before touchdown.

During a critical period lasting only about seven minutes, the Mars Science Laboratory spacecraft carrying Curiosity must decelerate from about 13,200 mph (about 5,900 meters per second) to allow the rover to land on the surface at about 1.7 mph (three-fourths of a meter per second). Curiosity is scheduled to land at approximately 10:31 p.m. PDT on Aug. 5 (1:31 a.m. EDT on Aug. 6).

"Those seven minutes are the most challenging part of this entire mission," said Pete Theisinger, the mission's project manager at JPL. "For the landing to succeed, hundreds of events will need to go right, many with split-second timing and all controlled autonomously by the spacecraft. We've done all we can think of to succeed. We expect to get Curiosity safely onto the ground, but there is no guarantee. The risks are real."

During the initial weeks after the actual landing, JPL mission controllers will put the rover through a series of checkouts and activities to characterize its performance on Mars, while gradually ramping up scientific investigations. Curiosity then will begin investigating whether an area with a wet history inside Mars' Gale Crater ever has offered an environment favorable for microbial life.

"Earlier missions have found that ancient Mars had wet environments," said Michael Meyer, lead scientist for NASA's Mars Program at NASA Headquarters. "Curiosity takes us the next logical step in understanding the potential for life on Mars."

Curiosity will use tools on a robotic arm to deliver samples from Martian rocks and soils into laboratory instruments inside the rover that can reveal chemical and mineral composition. A laser instrument will use its beam to induce a spark on a target and read the spark's spectrum of light to identify chemical elements in the target.

Other instruments on the car-sized rover will examine the surrounding environment from a distance or by direct touch with the arm. The rover will check for the basic chemical ingredients for life and for evidence about energy available for life. It also will assess factors that could be hazardous for life, such as the radiation environment.

"For its ambitious goals, this mission needs a great landing site and a big payload," said Doug McCuistion, director of the Mars Exploration Program at NASA Headquarters. "During the descent through the atmosphere, the mission will rely on bold techniques enabling use of a smaller target area and a heavier robot on the ground than were possible for any previous Mars mission. Those techniques also advance us toward human-crew Mars missions, which will need even more precise targeting and heavier landers."

The chosen landing site is beside a mountain informally called Mount Sharp. The mission's prime destination lies on the slope of the mountain. Driving there from the landing site may take many months.

"Be patient about the drive. It will be well worth the wait and we are apt to find some targets of interest on the way," said John Grotzinger, MSL project scientist at the California Institute of Technology in Pasadena. "When we get to the lower layers in Mount Sharp, we'll read them like chapters in a book about changing environmental conditions when Mars was wetter than it is today."

In collaboration with Microsoft Corp., a new outreach game was unveiled Monday to give the public a sense of the challenge and adventure of landing in a precise location on the surface. Called "Mars Rover Landing," the game is an immersive experience for the Xbox 360 home entertainment console that allows users to take control of their own spacecraft and face the extreme challenges of landing a rover on Mars.

"Technology is making it possible for the public to participate in exploration as it never has before," said Michelle Viotti, JPL's Mars public engagement manager. "Because Mars exploration is fundamentally a shared human endeavor, we want everyone around the globe to have the most immersive experience possible."

.


Related Links
Mars Science Laboratory
Mars News and Information at MarsDaily.com
Lunar Dreams and more






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








MARSDAILY
Curiosity Rover on Track for Early August Landing
Pasadena CA (JPL) Jul 17, 2012
A maneuver on Tuesday adjusted the flight path of NASA's Mars Science Laboratory spacecraft for delivering the rover Curiosity to a landing target beside a Martian mountain. The car-size, one-ton rover is bound for arrival the evening of Aug. 5, 2012, PDT (early Aug. 6, EDT and Universal Time). The landing will mark the beginning of a two-year prime mission to investigate whether one of th ... read more


MARSDAILY
Microsoft revamps Office with 'cloud' links

New Dell fund will invest in data storage technology

Smart materials get SMARTer

Samsung to buy part of British electronics firm

MARSDAILY
Northrop Grumman's RC-12X Airborne Signals Intelligence System Completes 1,000th Mission

Raytheon's vehicular soldier radio system links 37 different types of US, coalition radios

Lockheed Martin to Support Intelligence Analysis Worldwide Under DIA Solutions Contract

Raytheon already meets 80 percent of USAF requirements for alternate satellite terminal program

MARSDAILY
SpaceX Completes Design Review of Dragon

Arianespace to launch Taranis satellite for CNES

SpaceX Dragon Utilizes Cooper Interconnect Non-Explosive Actuators

ILS Proton Launches SES-5 For SES

MARSDAILY
GMV Leads Satellite Navigation Project In Collaboration With The South African National Space Agency

SSTL signs contract with OHB for second batch of Galileo payloads

Phone app will navigate indoors

Announcement of ACRIDS product line for Precision Airdrop Systems

MARSDAILY
Japan Airlines dismisses budget airlines threat

Iraq seeks to speed up F-16 deliveries

Boeing Commends ICAO Progress on Developing a Global Aviation Carbon Standard

Raytheon and US Navy begin MALD-J Super Hornet integration

MARSDAILY
University of Utah physicists invent 'spintronic' LED

Platinum is wrong stuff for fuel cells

Toughened silicon sponges may make tenacious batteries

Keeping electric vehicle batteries cool

MARSDAILY
NASA's Landsat Data Continuity Mission Becomes an Observatory

New eyes in the sky

IGARSS 2012 - 'Remote Sensing for a Dynamic Earth'

MSG-3 set to ensure quality of Europe's weather service from geostationary orbit

MARSDAILY
Poison from illegal pot farms said a risk

India has least eco impact but feels guilty: study

Copper making salmon prone to predators

Non-stop Spanish fiesta a challenge for clean-up crews




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement