Space Industry and Business News  
TECH SPACE
NASA to Advance Unique 3D Printed Sensor Technology
by Lori Keesey for GSFC News
Greenbelt MD (SPX) Feb 15, 2019

Technologist Mahmooda Sultana holds an early iteration of an autonomous multifunctional sensor platform, which could benefit all of NASA's major scientific disciplines and efforts to send humans to the Moon and Mars.

A NASA technologist is taking miniaturization to the extreme. Mahmooda Sultana won funding to advance a potentially revolutionary, nanomaterial-based detector platform. The technology is capable of sensing everything from minute concentrations of gases and vapor, atmospheric pressure and temperature, and then transmitting that data via a wireless antenna - all from the same self-contained platform that measures just two-by-three-inches in size.

Under a $2 million technology development award, Sultana and her team at NASA's Goddard Space Flight Center in Greenbelt, Maryland, will spend the next two years advancing the autonomous multifunctional sensor platform. If successful the technology could benefit NASA's major science disciplines and efforts to send humans to the Moon and Mars. These tiny platforms could be deployed on planetary rovers to detect small quantities of water and methane, for example, or be used as monitoring or biological sensors to maintain astronaut health and safety.

Central to the effort, funded by NASA's Space Technology Mission Directorate's (STMD) Early Career Initiative (ECI) is a 3D printing system developed by Ahmed Busnina and his group at Northeastern University in Boston. The 3D printing system is like printers used to produce money or newspapers. However, instead of ink, the printer applies nanomaterials, layer-by-layer, onto a substrate to create tiny sensors. Ultimately, each is capable of detecting a different gas, pressure level or temperature.

Nanomaterials, such as carbon nanotubes, graphene, molybdenum disulfide and others, exhibit interesting physical properties. They are highly sensitive and stable at extreme conditions. They are also lightweight, hardened against radiation and require less power, making them ideal for space applications, Sultana said.

Under her partnership with Northeastern University, Sultana and her group will design the sensor platform, determining which combination of materials are best for measuring minute, parts-per-billion concentrations of water, ammonia, methane and hydrogen - all important in the search for life throughout the solar system. Using her design, Northeastern University will then use its Nanoscale Offset Printing System to apply the nanomaterials. Once printed, Sultana's group will functionalize the individual sensors by depositing additional layers of nanoparticles to enhance their sensitivity, integrate the sensors with readout electronics, and package the entire platform.

The approach differs dramatically from how technologists currently fabricate multifunctional sensor platforms. Instead of building one sensor at a time and then integrating it to other components, 3D printing allows technicians to print a suite of sensors on one platform, dramatically simplifying the integration and packaging process.

Also innovative is Sultana's plan to print on the same silicon wafer partial circuitry for a wireless communications system that would communicate with ground controllers, further simplifying instrument design and construction. Once printed, the sensors and wireless antenna will be packaged onto a printed circuit board that holds the electronics, a power source, and the rest of the communications circuitry.

"The beauty of our concept is that we're able to print all sensors and partial circuity on the same substrate, which could be rigid or flexible. We eliminate a lot of the packaging and integration challenges," Sultana said. "This is truly a multifunctional sensor platform. All my sensors are on same chip, printed one after another in layers."

Wide-Ranging Uses
The research picks up where other NASA-funded efforts ended. Under several previous efforts funded by Goddard's Internal Research and Development Program and STMD's Center Innovation Fund, Sultana and her team used the same technique to manufacture and demonstrate individual sensors made of carbon nanotubes and molybdenum disulfide, among other materials. "The sensors were found to be quite sensitive, down to low parts per million. With our ECI funding, we are targeting the instrument's sensitivity to parts per billion by improving sensor design and structure," Sultana said.

According to her, the project addresses NASA's need for low-power, small, lightweight, and highly sensitive sensors that can distinguish important molecules other than by measuring the masses of a molecule's fragments, which is how many missions currently detect molecules today using mass spectrometers.

In fact, the agency has acknowledged that future sensors need to detect minute concentrations of gases and vapors in the parts per billion level. Although mass spectrometers can detect a wide spectrum of molecules - particularly useful for unknown samples - they have difficulty distinguishing between some of the important species, such as water, methane and ammonia. "It's also difficult to reach the parts per billion or beyond level with them," she said.

"We're really excited about the possibilities of this technology," Sultana said. "With our funding, we can take this technology to the next level and potentially offer NASA a new way to create customized, multifunctional sensor platforms, which I believe could open the door to all types of mission concepts and uses. The same approach we use to identify gases on a planetary body also could be used to create biological sensors that monitor astronaut health and the levels of contaminants inside spacecraft and living quarters."


Related Links
3D Printing at NASA
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
3D printed tires and shoes that self-repair
Los Angeles CA (SPX) Feb 06, 2019
Instead of throwing away your broken boots or cracked toys, why not let them fix themselves? Researchers at the University of Southern California Viterbi School of Engineering have developed 3D-printed rubber materials that can do just that. Assistant Professor Qiming Wang works in the world of 3D printed materials, creating new functions for a variety of purposes, from flexible electronics to sound control. Now, working with Viterbi students Kunhao Yu, An Xin, and Haixu Du, and University of Conn ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Raytheon contract ceiling for Silent Knight development upped by $15M

Polymers pave way for wider use of recycled tires in asphalt

Turning desalination waste into a useful resource

Ultra-lightweight ceramic material can withstand extreme temps

TECH SPACE
Raytheon awarded $406M for Army aircraft radio system

Lockheed Martin to develop cyber electronic warfare pod for UAVs

Britain to spend $1.3M for satellite antennas in light of Brexit

Reflectarray Antenna offers high performance in small package: DARPA

TECH SPACE
TECH SPACE
Angry Norway says Russia jamming GPS signals again

Kite-blown Antarctic explorers make most southerly Galileo positioning fix

Magnetic north pole leaves Canada, on fast new path

NOAA releases early update for World Magnetic Model

TECH SPACE
Raytheon nets $88.4M for Hornet, Growler electronic upgrades

Spain joins France, Germany on new combat fighter

Bell awarded $240M for 12 Viper helicopters for Bahrain

Airbnb eyes the sky with hire of aviation exec

TECH SPACE
Spintronics by 'straintronics'

Penn engineers develop room temperature, two-dimensional platform for quantum technology

Quantum strangeness gives rise to new electronics

Boosting solid state chemical reactions

TECH SPACE
exactEarth's real-time maritime tracking system now fully-deployed

Swarm helps pinpoint new magnetic north for smartphones

In Solar System's Symphony, Earth's Magnetic Field Drops the Beat

Van Allen Probes begin final phase exploring Earth's radiation belts

TECH SPACE
In New York, one non-profit looks to combat textile waste

Philip Morris eyes tech gadgets for 'smoke-free' market

Ten towns hit by river pollution from Brazil dam disaster

NUS marine scientists find toxic bacteria on microplastics retrieved from tropical waters









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.