Space Industry and Business News  
SOLAR SCIENCE
NASA missions measure solar flare from 2 spots in space
by Staff Writers
Greenbelt MD (SPX) Apr 20, 2016


During a December 2013 solar flare, three NASA missions observed a current sheet form -- a strong clue for explaining what initiates the flares. This animation shows four views of the flare from NASA's Solar Dynamics Observatory, NASA's Solar and Terrestrial Relations Observatory, and JAXA/NASA's Hinode, allowing scientists to make unprecedented measurements of its characteristics. The current sheet is a long, thin structure, especially visible in the views on the left. Those two animations depict light emitted by material with higher temperatures, so they better show the extremely hot current sheet. Image courtesy NASA/JAXA/SDO/STEREO/Hinode (courtesy Zhu, et al.). For a larger version of this image please go here.

Solar flares are intense bursts of light from the sun. They are created when complicated magnetic fields suddenly and explosively rearrange themselves, converting magnetic energy into light through a process called magnetic reconnection - at least, that's the theory, because the signatures of this process are hard to detect. But during a December 2013 solar flare, three solar observatories captured the most comprehensive observations of an electromagnetic phenomenon called a current sheet, strengthening the evidence that this understanding of solar flares is correct.

These eruptions on the sun eject radiation in all directions. The strongest solar flares can impact the ionized part of Earth's atmosphere - the ionosphere - and interfere with our communications systems, like radio and GPS, and also disrupt onboard satellite electronics. Additionally, high-energy particles - including electrons, protons and heavier ions - are accelerated by solar flares.

Unlike other space weather events, solar flares travel at the speed of light, meaning we get no warning that they're coming. So scientists want to pin down the processes that create solar flares - and even some day predict them before our communications can be interrupted.

"The existence of a current sheet is crucial in all our models of solar flares," said James McAteer, an astrophysicist at New Mexico State University in Las Cruces and an author of a study on the December 2013 event, published on April 19, 2016, in the Astrophysical Journal Letters. "So these observations make us much more comfortable that our models are good."

And better models lead to better forecasting, said Michael Kirk, a space scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland, who was not involved in the study. "These complementary observations allowed unprecedented measurements of magnetic reconnection in three dimensions," Kirk said. "This will help refine how we model and predict the evolution of solar flares."

Looking at Current Sheets
A current sheet is a very fast, very flat flow of electrically-charged material, defined in part by its extreme thinness compared to its length and width. Current sheets form when two oppositely-aligned magnetic fields come in close contact, creating very high magnetic pressure. Electric current flowing through this high-pressure area is squeezed, compressing it down to a very fast and thin sheet. It's a bit like putting your thumb over the opening of a water hose - the water, or, in this case, the electrical current, is forced out of a tiny opening much, much faster. This configuration of magnetic fields is unstable, meaning that the same conditions that create current sheets are also ripe for magnetic reconnection.

"Magnetic reconnection happens at the interface of oppositely-aligned magnetic fields," said Chunming Zhu, a space scientist at New Mexico State University and lead author on the study. "The magnetic fields break and reconnect, leading to a transformation of the magnetic energy into heat and light, producing a solar flare."

Because current sheets are so closely associated with magnetic reconnection, observing a current sheet in such detail backs up the idea that magnetic reconnection is the force behind solar flares.

"You have to be watching at the right time, at the right angle, with the right instruments to see a current sheet," said McAteer. "It's hard to get all those ducks in a row."

This isn't the first time scientists have observed a current sheet during a solar flare, but this study is unique in that several measurements of the current sheet - such as speed, temperature, density and size - were observed from more than one angle or derived from more than method.

This multi-faceted view of the December 2013 flare was made possible by the wealth of instruments aboard three solar-watching missions: NASA's Solar Dynamics Observatory, or SDO, NASA's Solar and Terrestrial Relations Observatory, or STEREO - which has a unique viewing angle on the far side of the sun - and Hinode, which is a collaboration between the space agencies of Japan, the United States, the United Kingdom and Europe led by the Japan Aerospace Exploration Agency.

Even when scientists think they've spotted something that might be a current sheet in solar data, they can't be certain without ticking off a long list of attributes. Since this current sheet was so well-observed, the team was able to confirm that its temperature, density, and size over the course of the event were consistent with a current sheet.

As scientists work up a better picture of how current sheets and magnetic reconnection lead to solar eruptions, they'll be able to produce better models of the complex physics happening there - providing us with ever more insight on how our closest star affects space all around us.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Goddard Space Flight Center
Solar Science News at SpaceDaily






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SOLAR SCIENCE
Solar storm researchers prepare for the 'big one' with new urgency
Newark NJ (SPX) Apr 12, 2016
The specter of a geomagnetic solar storm with the ferocity to disrupt communications satellites, knock out GPS systems, shut down air travel and quench lights, computers and telephones in millions of homes for days, months or even years has yet to grip the public as a panic-inducing possibility. But it is a scenario that space scientists, global insurance corporations and government agenci ... read more


SOLAR SCIENCE
Students observe damaged Hitomi X-ray satellite and debris

Why sailing to the stars has suddenly become a realistic goal

Strathclyde-led project to open up space technology to new nations

Progress of simulating dynamics in heterogeneous materials

SOLAR SCIENCE
U.S. Army orders radios for Mid-East, African countries

Harris supplies tactical radios to African country

In-orbit delivery of Laos' 1st satellite launched

Upgrade set for Britain's tactical communications system

SOLAR SCIENCE
Arianespace cooperation with Russia remains smooth amid sanctions

Orbital ATK awarded major sounding rocket contract by NASA

SpaceX lands rocket on ocean platform for first time

SpaceX cargo arrives at crowded space station

SOLAR SCIENCE
Satellite touchdown in run up to Galileo launch

Russian Glonass Satellite Scheduled for Launch on May 21

Glonass navigation system's ground infrastructure successfully completed

China launches 22nd BeiDou navigation satellite

SOLAR SCIENCE
India to pay $8.8 bn for Rafale fighter jets

Photographic shockwave research reaches new heights with BOSCO flights

Airport protesters accuse Hong Kong leader of breaching safety rules

Russian MOD orders Yak-130 trainer/light attack planes

SOLAR SCIENCE
Russian scientists develop long-range secure quantum comms system

Ames physicists discover new material that may speed computing

Quantum dots enhance light-to-current conversion in layered semiconductors

Oregon researchers use light and sound waves to control electron states

SOLAR SCIENCE
Flexible camera offers radically different approach to imaging

Coming soon to an orbit near you: GOES-R

Mapping software tracks threats to endangered species

Twiss interferometry offers new approach for remote sensing

SOLAR SCIENCE
Anti-pollution activists cover London statues with masks

India's smog-choked capital imposes driving restrictions

Combined effects of copper and climate can be deadly for amphibians

Moss is useful bioindicator of cadmium air pollution, new study finds









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.