Space Industry and Business News  
MARSDAILY
NASA builds its next Mars rover mission
by Andrew Good for JPL News
Pasadena CA (JPL) Nov 29, 2017


This artist's concept depicts NASA's Mars 2020 rover exploring Mars. The mission will not only seek out and study an area likely to have been habitable in the distant past, but it will take the next, bold step in robotic exploration of the Red Planet by seeking signs of past microbial life itself.

In just a few years, NASA's next Mars rover mission will be flying to the Red Planet. At a glance, it looks a lot like its predecessor, the Curiosity Mars rover. But there's no doubt it's a souped-up science machine: It has seven new instruments, redesigned wheels and more autonomy. A drill will capture rock cores, while a caching system with a miniature robotic arm will seal up these samples. Then, they'll be deposited on the Martian surface for possible pickup by a future mission.

This new hardware is being developed at NASA's Jet Propulsion Laboratory, Pasadena, California, which manages the mission for the agency. It includes the Mars 2020 mission's cruise stage, which will fly the rover through space, and the descent stage, a rocket-powered "sky crane" that will lower it to the planet's surface. Both of these stages have recently moved into JPL's Spacecraft Assembly Facility.

Mars 2020 relies heavily on the system designs and spare hardware previously created for Mars Science Laboratory's Curiosity rover, which landed in 2012. Roughly 85 percent of the new rover's mass is based on this "heritage hardware."

"The fact that so much of the hardware has already been designed - or even already exists - is a major advantage for this mission," said Jim Watzin, director of NASA's Mars Exploration Program. "It saves us money, time and most of all, reduces risk."

Despite its similarities to Mars Science Laboratory, the new mission has very different goals. Mars 2020's instruments will seek signs of ancient life by studying terrain that is now inhospitable, but once held flowing rivers and lakes, more than 3.5 billion years ago.

To achieve these new goals, the rover has a suite of cutting-edge science instruments. It will seek out biosignatures on a microbial scale: An X-ray spectrometer will target spots as small as a grain of table salt, while an ultraviolet laser will detect the "glow" from excited rings of carbon atoms. A ground-penetrating radar will be the first instrument to look under the surface of Mars, mapping layers of rock, water and ice up to 30 feet (10 meters) deep, depending on the material.

The rover is getting some upgraded Curiosity hardware, including color cameras, a zoom lens and a laser that can vaporize rocks and soil to analyze their chemistry.

"Our next instruments will build on the success of MSL, which was a proving ground for new technology," said George Tahu, NASA's Mars 2020 program executive. "These will gather science data in ways that weren't possible before."

The mission will also undertake a marathon sample hunt: The rover team will try to drill at least 20 rock cores, and possibly as many as 30 or 40, for possible future return to Earth.

"Whether life ever existed beyond Earth is one of the grand questions humans seek to answer," said Ken Farley of JPL, Mars 2020's project scientist. "What we learn from the samples collected during this mission has the potential to address whether we're alone in the universe."

JPL is also developing a crucial new landing technology called terrain-relative navigation. As the descent stage approaches the Martian surface, it will use computer vision to compare the landscape with pre-loaded terrain maps. This technology will guide the descent stage to safe landing sites, correcting its course along the way.

A related technology called the range trigger will use location and velocity to determine when to fire the spacecraft's parachute. That change will narrow the landing ellipse by more than 50 percent.

"Terrain-relative navigation enables us to go to sites that were ruled too risky for Curiosity to explore," said Al Chen of JPL, the Mars 2020 entry, descent and landing lead. "The range trigger lets us land closer to areas of scientific interest, shaving miles - potentially as much as a year - off a rover's journey."

This approach to minimizing landing errors will be critical in guiding any future mission dedicated to retrieving the Mars 2020 samples, Chen said.

Site selection has been another milestone for the mission. In February, the science community narrowed the list of potential landing sites from eight to three. Those three remaining sites represent fundamentally different environments that could have harbored primitive life: an ancient lakebed called Jezero Crater; Northeast Syrtis, where warm waters may have chemically interacted with subsurface rocks; and a possible hot springs at Columbia Hills.

All three sites have rich geology and may potentially harbor signs of past microbial life. A final landing site decision is still more than a year away.

"In the coming years, the 2020 science team will be weighing the advantages and disadvantages of each of these sites," Farley said. "It is by far the most important decision we have ahead of us."

Andrew Good NASA Builds its Next Mars Rover Mission https://www.nasa.gov/feature/jpl/nasa-builds-its-next-mars-rover-mission http://www.nasa.gov/mars2020 Mars 2020 In just a few years, NASA's next Mars rover mission will be flying to the Red Planet.

At a glance, it looks a lot like its predecessor, the Curiosity Mars rover. But there's no doubt it's a souped-up science machine: It has seven new instruments, redesigned wheels and more autonomy. A drill will capture rock cores, while a caching system with a miniature robotic arm will seal up these samples. Then, they'll be deposited on the Martian surface for possible pickup by a future mission.

This new hardware is being developed at NASA's Jet Propulsion Laboratory, Pasadena, California, which manages the mission for the agency. It includes the Mars 2020 mission's cruise stage, which will fly the rover through space, and the descent stage, a rocket-powered "sky crane" that will lower it to the planet's surface. Both of these stages have recently moved into JPL's Spacecraft Assembly Facility.

Mars 2020 relies heavily on the system designs and spare hardware previously created for Mars Science Laboratory's Curiosity rover, which landed in 2012. Roughly 85 percent of the new rover's mass is based on this "heritage hardware."

"The fact that so much of the hardware has already been designed - or even already exists - is a major advantage for this mission," said Jim Watzin, director of NASA's Mars Exploration Program. "It saves us money, time and most of all, reduces risk."

Despite its similarities to Mars Science Laboratory, the new mission has very different goals. Mars 2020's instruments will seek signs of ancient life by studying terrain that is now inhospitable, but once held flowing rivers and lakes, more than 3.5 billion years ago.

To achieve these new goals, the rover has a suite of cutting-edge science instruments. It will seek out biosignatures on a microbial scale: An X-ray spectrometer will target spots as small as a grain of table salt, while an ultraviolet laser will detect the "glow" from excited rings of carbon atoms. A ground-penetrating radar will be the first instrument to look under the surface of Mars, mapping layers of rock, water and ice up to 30 feet (10 meters) deep, depending on the material.

The rover is getting some upgraded Curiosity hardware, including color cameras, a zoom lens and a laser that can vaporize rocks and soil to analyze their chemistry.

"Our next instruments will build on the success of MSL, which was a proving ground for new technology," said George Tahu, NASA's Mars 2020 program executive. "These will gather science data in ways that weren't possible before."

The mission will also undertake a marathon sample hunt: The rover team will try to drill at least 20 rock cores, and possibly as many as 30 or 40, for possible future return to Earth.

"Whether life ever existed beyond Earth is one of the grand questions humans seek to answer," said Ken Farley of JPL, Mars 2020's project scientist. "What we learn from the samples collected during this mission has the potential to address whether we're alone in the universe."

JPL is also developing a crucial new landing technology called terrain-relative navigation. As the descent stage approaches the Martian surface, it will use computer vision to compare the landscape with pre-loaded terrain maps. This technology will guide the descent stage to safe landing sites, correcting its course along the way.

A related technology called the range trigger will use location and velocity to determine when to fire the spacecraft's parachute. That change will narrow the landing ellipse by more than 50 percent.

"Terrain-relative navigation enables us to go to sites that were ruled too risky for Curiosity to explore," said Al Chen of JPL, the Mars 2020 entry, descent and landing lead. "The range trigger lets us land closer to areas of scientific interest, shaving miles - potentially as much as a year - off a rover's journey."

This approach to minimizing landing errors will be critical in guiding any future mission dedicated to retrieving the Mars 2020 samples, Chen said.

Site selection has been another milestone for the mission. In February, the science community narrowed the list of potential landing sites from eight to three. Those three remaining sites represent fundamentally different environments that could have harbored primitive life: an ancient lakebed called Jezero Crater; Northeast Syrtis, where warm waters may have chemically interacted with subsurface rocks; and a possible hot springs at Columbia Hills.

All three sites have rich geology and may potentially harbor signs of past microbial life. A final landing site decision is still more than a year away.

"In the coming years, the 2020 science team will be weighing the advantages and disadvantages of each of these sites," Farley said. "It is by far the most important decision we have ahead of us."

MARSDAILY
Mars 2020 Mission performs first supersonic parachute test
Pasadena CA (JPL) Nov 15, 2017
Landing on Mars is difficult and not always successful. Well-designed advance testing helps. An ambitious NASA Mars rover mission set to launch in 2020 will rely on a special parachute to slow the spacecraft down as it enters the Martian atmosphere at over 12,000 mph (5.4 kilometers per second). Preparations for this mission have provided, for the first time, dramatic video of the parachute open ... read more

Related Links
Mars 2020
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
Quantum optics allows us to abandon expensive lasers in spectroscopy

Spin current from heat: New material increases efficiency

New catalyst controls activation of a carbon-hydrogen bond

Math gets real in strong, lightweight structures

MARSDAILY
US Navy accepts 5th MUOS Satellite for global military cellular network

SES GS Awarded US Government Satellite Solutions Contract

16th SPCS Defenders of critical satellite communications

First order for Elta ELK-1882T SATCOM network system

MARSDAILY
MARSDAILY
Lockheed Martin assembles third US Air Force GPS 3 satellite

DARPA digging for ideas to revolutionize subterranean mapping

China's GPS network Beidou joins global rescue data network

Galileo quartet fuelled and ready to fly

MARSDAILY
Indian aerospace behemoth reveals why Indo-Russia FGFA is highly feasible

Lockheed awarded $37.7M contract for F-35 software conversions

Indonesia re-opening Bali airport shut by volcanic ash

China's Okay Airways orders five Boeing Dreamliners for $1.4 bn

MARSDAILY
Quantum simulators wield control over more than 50 qubits, setting new record

Argonne to install Comanche system to explore ARM technology for HPC

Strain-free epitaxy of germanium film on mica

Microwave-based test method can help keep 3-D chip designers' eyes open

MARSDAILY
Haze pollution affects satellite cloud detection

OGC seeks public comment on CDB Multi-spectral Imagery Extension

Forty years of Meteosat

China launches remote sensing satellites in multiple launches

MARSDAILY
99 percent of ocean microplastics could be identified with dye

Vietnam jails activist for 7 years over toxic leak protests

Clean-up dives, recycling: Lebanese respond to garbage crisis

'Trash islands' off Central America indicate ocean pollution problem









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.