Space Industry and Business News  
WOOD PILE
NASA Survey Technique Estimates Congo Forest's Carbon
by Staff Writers
Pasadena CA (JPL) Nov 29, 2017


Saatchi says preserving forests is probably the most immediate mechanism we have to mitigate carbon dioxide accumulating in the atmosphere. A quarter of the entire amount of carbon that goes into the atmosphere globally is absorbed by Earth's vegetation, so protecting and possibly increasing the amount of carbon stored in forests could have significant benefits, such as mitigating climate change and preserving biodiversity and water quality.

The equivalent of 85 billion tons of carbon dioxide - a huge amount equal to three-quarters of the carbon stored in forests across the contiguous United States - is locked in the living vegetation of one African country that holds much of the second largest tropical rainforest in the world, according to new research.

The study conducted by NASA, UCLA and the World Wide Fund for Nature-Germany produced the first high-resolution map of the amount and distribution of carbon stored in the Democratic Republic of Congo (DRC). DRC is the largest country in the Congo Basin and home to a massive and largely inaccessible rainforest that is Earth's second largest reservoir of carbon in vegetation, second only to the Amazon Basin rainforest. The DRC's forests cover an area four times the size of California.

The DRC carbon stock estimates are based on very fine-scale three-dimensional measurements of forest structure that provide, for the first time, data for one of the most diverse tropical forests on Earth. The measurements will help scientists understand the role of this forest in the global carbon cycle and how variations in climate may influence their carbon stock and function.

"We learned that the distribution of carbon in the above-ground biomass of the more than 150 million hectares (about 371 million acres) of forest in the DRC is extremely variable and diverse because of the region's climate, soil types, and a long history of human presence," said Sassan Saatchi, a senior researcher at NASA's Jet Propulsion Laboratory in Pasadena, California, who led the research team.

"You cannot think of the Congo rainforest as this big green carpet anymore. We encountered a large variety of tree sizes and densities across the DRC, producing extremely complex regional patterns of carbon stored in the forest."

Traditionally, inventories of forest carbon and biomass are done by researchers who hike into the forest and set up plots on the ground that attempt to capture the full range of terrain. These data are then catalogued, measured and revisited in the future to see how they've changed.

The Congo Basin forests, however, span five countries, and many areas are difficult to access due to the lack of infrastructure and rough terrain, which doesn't allow for comprehensive ground measurements of the forest carbon. To observe the forests, the research team took to both air and space.

Using the same forestry techniques to establish inventory plots on the ground, the research team contracted a local African company to fly an airplane outfitted with a commercial Light Detection and Ranging (LIDAR) instrument over 216 locations covering more than 2.5 million acres (half a million hectares) of tropical forest. At each location, the LIDAR captured the height, canopy profile, and outline of treetop canopies with data points 20 inches (50 centimeters) apart, from which they derived the forest structure and carbon estimate.

These data were paired with data from NASA's Shuttle Radar Topography Mission, which provided the slopes and curves of the ground surface itself; Japan Aerospace Exploration Agency Advanced Land Observing Satellite Phased Array type L-band Synthetic Aperture Radar (PALSAR) data; and U.S. Geological Survey-NASA Landsat vegetation observations. The combined data sets were scaled up to produce a map of the entire above-ground forest carbon stocks for each 12,000-square-yard (1-hectare) land unit.

Conserving tropical forests like the Congo is a high priority for the United Nations in its efforts to defray the effects of climate change. The U.N. has a policy initiative known as Reduce Emissions from Deforestation and Degradation (REDD+) in nations with large forests like the DRC.

The new findings and research methods, conducted in partnership with scientists and the DRC government, are the first step for DRC to establish a baseline assessment of its carbon stocks and a system for future forest monitoring required to participate in REDD+ and be eligible for compensation for preserving the forests.

Saatchi says preserving forests is probably the most immediate mechanism we have to mitigate carbon dioxide accumulating in the atmosphere. A quarter of the entire amount of carbon that goes into the atmosphere globally is absorbed by Earth's vegetation, so protecting and possibly increasing the amount of carbon stored in forests could have significant benefits, such as mitigating climate change and preserving biodiversity and water quality.

"The DRC national carbon map is a truly significant contribution to DRC's future sustainable development," said co-author Aurelie Shapiro at World Wide Fund for Nature-Germany in Berlin. "This innovative product demonstrates with unprecedented accuracy the important role of Congolese forests in mitigating climate change, which is facilitating investments into emissions reductions programs."

To estimate the carbon stored above ground in DRC forests, the research team developed data sets for tree height and tree cover, which vary from one end of the DRC to the other. This information is also extremely helpful to conservationists interested in quantifying the health of habitats for gorillas and other at-risk animals, said Shapiro.

The new results will help test and validate the capabilities of two upcoming NASA missions: the NASA-Indian Space Research Organization Synthetic Aperture Radar, or NISAR, mission, managed by JPL; and the LIDAR observations from the Global Ecosystem Dynamics Investigation, or GEDI, mission, managed by NASA's Goddard Space Flight Center in Greenbelt, Maryland. GEDI will mount a space-based LIDAR on the International Space Station to produce high-resolution 3-D imagery of Earth's forests.

The study is published Nov. 8 in Scientific Reports, a Nature publication. The paper is here

WOOD PILE
Amazon's recovery from forest losses limited by climate change
Edinburgh UK (SPX) Nov 22, 2017
Deforested areas of the Amazon Basin have a limited ability to recover because of recent changes in climate, a study shows. Limited growth in a drier climate has restricted the amount of carbon that new trees can lock away from the atmosphere, reducing their ability to counteract the effects of global warming. Forests replanted today would likely be able to recapture only two-thirds ... read more

Related Links
Reduce Emissions from Deforestation and Degradation Program
Forestry News - Global and Local News, Science and Application


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WOOD PILE
Quantum optics allows us to abandon expensive lasers in spectroscopy

Spin current from heat: New material increases efficiency

New catalyst controls activation of a carbon-hydrogen bond

Math gets real in strong, lightweight structures

WOOD PILE
US Navy accepts 5th MUOS Satellite for global military cellular network

SES GS Awarded US Government Satellite Solutions Contract

16th SPCS Defenders of critical satellite communications

First order for Elta ELK-1882T SATCOM network system

WOOD PILE
WOOD PILE
Lockheed Martin assembles third US Air Force GPS 3 satellite

DARPA digging for ideas to revolutionize subterranean mapping

China's GPS network Beidou joins global rescue data network

Galileo quartet fuelled and ready to fly

WOOD PILE
Indian aerospace behemoth reveals why Indo-Russia FGFA is highly feasible

Lockheed awarded $37.7M contract for F-35 software conversions

Indonesia re-opening Bali airport shut by volcanic ash

China's Okay Airways orders five Boeing Dreamliners for $1.4 bn

WOOD PILE
Quantum simulators wield control over more than 50 qubits, setting new record

Argonne to install Comanche system to explore ARM technology for HPC

Strain-free epitaxy of germanium film on mica

Microwave-based test method can help keep 3-D chip designers' eyes open

WOOD PILE
Haze pollution affects satellite cloud detection

OGC seeks public comment on CDB Multi-spectral Imagery Extension

Forty years of Meteosat

China launches remote sensing satellites in multiple launches

WOOD PILE
99 percent of ocean microplastics could be identified with dye

Vietnam jails activist for 7 years over toxic leak protests

Clean-up dives, recycling: Lebanese respond to garbage crisis

'Trash islands' off Central America indicate ocean pollution problem









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.