Space Industry and Business News  
NASA Spacecraft Shows Diverse, Wet Environments On Ancient Mars

A color-enhanced image of the delta in Jezero Crater, which once held a lake. Researchers led by CRISM team member and Brown graduate student Bethany Ehlmann report that ancient rivers ferried clay-like minerals (shown in green) into the lake, forming the delta. Clays tend to trap and preserve organic matter, making the delta a good place to look for signs of ancient life. Image credit: NASA/JPL/JHUAPL/MSSS/Brown University.
by Staff Writers
Washington DC (SPX) Jul 21, 2008
Two studies based on data from NASA's Mars Reconnaissance Orbiter have revealed that the Red Planet once hosted vast lakes, flowing rivers and a variety of other wet environments that had the potential to support life.

One study, published in the July 17 issue of Nature, shows that vast regions of the ancient highlands of Mars, which cover about half the planet, contain clay minerals, which can form only in the presence of water.

Volcanic lavas buried the clay-rich regions during subsequent, drier periods of the planet's history, but impact craters later exposed them at thousands of locations across Mars. The data for the study derives from images taken by the Compact Reconnaissance Imaging Spectrometer for Mars, or CRISM, and other instruments on the orbiter.

"The big surprise from these new results is how pervasive and long-lasting Mars' water was, and how diverse the wet environments were," said Scott Murchie, CRISM principal investigator at the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.

The clay-like minerals, called phyllosilicates, preserve a record of the interaction of water with rocks dating back to what is called the Noachian period of Mars' history, approximately 4.6 billion to 3.8 billion years ago.

This period corresponds to the earliest years of the solar system, when Earth, the moon and Mars sustained a cosmic bombardment by comets and asteroids.

Rocks of this age have largely been destroyed on Earth by plate tectonics. They are preserved on the moon, but were never exposed to liquid water. The phyllosilicate-containing rocks on Mars preserve a unique record of liquid water environments possibly suitable for life in the early solar system.

"The minerals present in Mars' ancient crust show a variety of wet environments," said John Mustard, a member of the CRISM team from Brown University, and lead author of the Nature study.

"In most locations the rocks are lightly altered by liquid water, but in a few locations they have been so altered that a great deal of water must have flushed though the rocks and soil. This is really exciting because we're finding dozens of sites where future missions can land to understand if Mars was ever habitable and if so, to look for signs of past life."

Another study, published in the June 2 issue of Nature Geosciences, finds that the wet conditions on Mars persisted for a long time.

Thousands to millions of years after the clays formed, a system of river channels eroded them out of the highlands and concentrated them in a delta where the river emptied into a crater lake slightly larger than California's Lake Tahoe, approximately 25 miles in diameter.

"The distribution of clays inside the ancient lakebed shows that standing water must have persisted for thousands of years," says Bethany Ehlmann, another member of the CRISM team from Brown. Ehlmann is lead author of the study of an ancient lake within a northern-Mars impact basin called Jezero Crater.

"Clays are wonderful at trapping and preserving organic matter, so if life ever existed in this region, there's a chance of its chemistry being preserved in the delta."

CRISM's high spatial and spectral resolutions are better than any previous spectrometer sent to Mars and reveal variations in the types and composition of the phyllosilicate minerals.

By combining data from CRISM and the orbiter's Context Imager and High Resolution Imaging Science Experiment, the team identified three principal classes of water-related minerals dating to the early Noachian period.

The classes are aluminum-phyllosilicates, hydrated silica or opal, and the more common and widespread iron/magnesium-phyllosilicates. The variations in the minerals suggest that different processes, or different types of watery environments, created them.

"Our whole team is turning our findings into a list of sites where future missions could land to look for organic chemistry and perhaps determine whether life ever existed on Mars," said Murchie.

NASA's Jet Propulsion Laboratory in Pasadena, Calif., manages the Mars Reconnaissance Orbiter mission for NASA's Science Mission Directorate in Washington. The Applied Physics Laboratory operates the CRISM instrument in coordination with an international team of researchers from universities, government and the private sector.

Related Links
NASA's Mars Reconnaissance Orbiter
Mars News and Information at MarsDaily.com
Lunar Dreams and more



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Ancient Mars Was A Diverse Complex World
Washington DC (SPX) Jul 17, 2008
Two studies based on data from NASA's Mars Reconnaissance Orbiter have revealed that the Red Planet once hosted vast lakes, flowing rivers and a variety of other wet environments that had the potential to support life.







  • Google profit up 35 percent at 1.25 billion dollars
  • Microsoft posts sharp profit rise, cautious guidance
  • Google-Viacom lawsuit deal cloaks YouTube user identities
  • Brazilians first to unlock new iPhone: reports

  • AMC-21 Is Delivered To Spaceport
  • Sea Launch Delivers Echostar 11 To Orbit
  • Countdown Underway For The Launch Of The Echostar XI Satellite
  • Sea Launch Sets Sail For EchoStar XI Launch

  • China Southern Airlines managers take paycut due to oil prices
  • British PM blasts polluting 'ghost' flights
  • Air China says it is to buy 45 Boeing aircraft
  • Raytheon Leads Team To Evaluate Impact Of New Classes Of Aircraft For NASA

  • DRS Completes Testing Of PMM System
  • Boeing To Demo Net-Centric Upgrade On AWACS Aircraft
  • Satellite's Instrumentation Providing Scintillation Forecast Data
  • USAF E-8C Joint STARS Airframes Operationally Viable Through 2070

  • Advertisers' dream as Japanese display identifies customers
  • Virtual World Is Sign Of Future For Scientists And Engineers
  • Satellite Users Group Opposes UTC Request
  • EchoStar XI Satellite Deploys Solar Arrays On Schedule

  • NASA Names Strain New Goddard Space Flight Center Director
  • Raytheon IDS Names Del Checcolo Vice President, Engineering
  • John B. Higginbotham Appointed CEO Of Integral Systems
  • Sea Launch Transitions To New Leadership

  • NASA Works To Improve Short-Term Weather Forecasts
  • ESA To Consult The Science Community On Earth Explorer Selection
  • NASA's Deep Impact Films Earth As An Alien World
  • ESA Launches Program In Support Of Earth Observation Science

  • Garmin Proves Great Britain Is More Than Just Torque
  • Personal Navigation Most Popular LBS Application For Next Five Years
  • Ford's New Smart Intersection Talks To Cars To Help Reduce Fuel-Wasting Congestion
  • Real-Time Corrections Service For In-the-Field High-Accuracy Mapping

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement