. Space Industry and Business News .




.
STELLAR CHEMISTRY
NASA's Fermi Finds Youngest Millisecond Pulsar, 100 Pulsars To-Date
by Staff Writers
Greenbelt MD (SPX) Nov 07, 2011

This plot shows the positions of nine new pulsars (magenta) discovered by Fermi and of an unusual millisecond pulsar (green) that Fermi data reveal to be the youngest such object known. With this new batch of discoveries, Fermi has detected more than 100 pulsars in gamma rays. Credit: AEI and NASA/DOE/Fermi LAT Collaboration. For a larger version of this image please go here.

An international team of scientists using NASA's Fermi Gamma-ray Space Telescope has discovered a surprisingly powerful millisecond pulsar that challenges existing theories about how these objects form. At the same time, another team has located nine new gamma-ray pulsars in Fermi data, using improved analytical techniques.

A pulsar is a type of neutron star that emits electromagnetic energy at periodic intervals. A neutron star is the closest thing to a black hole that astronomers can observe directly, crushing half a million times more mass than Earth into a sphere no larger than a city. This matter is so compressed that even a teaspoonful weighs as much as Mount Everest.

"With this new batch of pulsars, Fermi now has detected more than 100, which is an exciting milestone when you consider that, before Fermi's launch in 2008, only seven of them were known to emit gamma rays," said Pablo Saz Parkinson, an astrophysicist at the Santa Cruz Institute for Particle Physics at the University of California Santa Cruz, and a co-author on two papers detailing the findings.

One group of pulsars combines incredible density with extreme rotation. The fastest of these so-called millisecond pulsars whirls at 43,000 revolutions per minute.

Millisecond pulsars are thought to achieve such speeds because they are gravitationally bound in binary systems with normal stars. During part of their stellar lives, gas flows from the normal star to the pulsar. Over time, the impact of this falling gas gradually spins up the pulsar's rotation.

The strong magnetic fields and rapid rotation of pulsars cause them to emit powerful beams of energy, from radio waves to gamma rays. Because the star is transferring rotational energy to the pulsar, the pulsar's spin eventually slows as the star loses matter.

Typically, millisecond pulsars are around a billion years old. However, in the Nov. 3 issue of Science, the Fermi team reveals a bright, energetic millisecond pulsar only 25 million years old.

The object, named PSR J1823-3021A, lies within NGC 6624, a spherical collection of ancient stars called a globular cluster, one of about 160 similar objects that orbit our galaxy. The cluster is about 10 billion years old and lies about 27,000 light-years away toward the constellation Sagittarius.

Fermi's Large Area Telescope (LAT) showed that eleven globular clusters emit gamma rays, the cumulative emission of dozens of millisecond pulsars too faint for even Fermi to detect individually. But that's not the case for NGC 6624.

"It's amazing that all of the gamma rays we see from this cluster are coming from a single object. It must have formed recently based on how rapidly it's emitting energy. It's a bit like finding a screaming baby in a quiet retirement home," said Paulo Freire, the study's lead author, at the Max Planck Institute for Radio Astronomy in Bonn, Germany.

J1823-3021A was previously identified as a pulsar by its radio emission, yet of the nine new pulsars, none are millisecond pulsars, and only one was later found to emit radio waves.

Despite its sensitivity, Fermi's LAT may detect only one gamma ray for every 100,000 rotations of some of these faint pulsars. Yet new analysis techniques applied to the precise position and arrival time of photons collected by the LAT since 2008 were able to identify them.

"We adapted methods originally devised for studying gravitational waves to the problem of finding gamma-ray pulsars, and we were quickly rewarded," said Bruce Allen, director of the Max Planck Institute for Gravitational Physics in Hannover, Germany. Allen co-authored a paper on the discoveries that was published online in The Astrophysical Journal.

Allen also directs the Einstein@Home project, a distributed computing effort that uses downtime on computers of volunteers to process astronomical data. In July, the project extended the search for gamma-ray pulsars to the general public by including Femi LAT data in the work processed by Einstein@Home users.

For additional background briefing materials related to this story, click here

Related Links
NASA Fermi Gamma-ray Space Telescope
Stellar Chemistry, The Universe And All Within It




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



STELLAR CHEMISTRY
Scientists study the 'galaxy zoo' using Google Maps and thousands of volunteers
Madrid, Spain (SPX) Nov 07, 2011
The reddest galaxies with the largest central bulb show the largest bars -gigantic central columns of stars and dark matter-, according to a scientific study that used Google Maps to observe the sky. A group of volunteers of more than 200,000 participants of the galaxy classification project Galaxy Zoo contributed to this research. More than two thirds of spiral galaxies, including our own ... read more


STELLAR CHEMISTRY
Lockheed Martin Acquires Sim-Industries

New elements join the periodic table

Electronics set to power US holiday sales: report

An Incredible Shrinking Material

STELLAR CHEMISTRY
LockMart Provides Affordable Smartphone Tactical Network Capability to US Marine Corps

AEHF-1 Satellite Arrives at Its Operational Orbit After 14-Month Journey

China suspect in US satellite interference: report

Emirates seek French military satellite

STELLAR CHEMISTRY
Arianespace Ends 2011 With Three Launcher Campaigns

Six Astrium satellites on the same flight

Arianespace's no. 2 Soyuz begins taking shape for launch from the Spaceport in French Guiana

Vega getting ready for exploitation

STELLAR CHEMISTRY
Galileo satellites handed over to control centre in Germany

Map mischief creates furore in India

In GPS case, US court debates '1984' scenario

Russia launches navigation satellites

STELLAR CHEMISTRY
Aviation grappling with new taxes and rules: AAPA

EU sticks to airline carbon rules despite UN opposition

Asia airline body raps EU plan for carbon tax

OGC Team Produces Winning Single European Sky Aviation Proposal

STELLAR CHEMISTRY
Researchers 'create' crystals by computer

The world's most efficient flexible OLED on plastic

A KAIST research team has developed a fully functional flexible memory

UCSB physicists identify room temperature quantum bits in widely used semiconductor

STELLAR CHEMISTRY
Stalled Weather Systems More Frequent in Decades of Warmer Atlantic

Thousand-Color Sensor Reveals Contaminants in Earth and Sea

NASA Launches JPL-Built Earth Science Experiment

Halloween Weekend Snow Paints a Ghostly Picture in the U.S. Northeast

STELLAR CHEMISTRY
Celebrities pressure China over pollution gauge

High toxic levels found at school, market neighboring informal e-waste salvage site in Africa

Excess heavy metals in 10% of China's land: report

Recycling thermal cash register receipts contaminates paper products with BPA


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement