Space Industry and Business News  
ABOUT US
Mutant ferrets offer clues to human brain size
by Staff Writers
Chevy Chase MD (SPX) Apr 16, 2018

illustration only

A genetically engineered ferret could help reveal how humans got their big brains.

By inactivating a gene linked to abnormally small brain size in humans, researchers have created the first ferret with a neurological mutation. Although the original impetus of the work was to study human brain disease and development, says Howard Hughes Medical Institute (HHMI) Investigator Christopher Walsh, the results also shed light on how the human brain expanded during the course of evolution.

"I'm trained as a neurologist, and study kids with developmental brain diseases," says Walsh, of Boston Children's Hospital. "I never thought I'd be peering into the evolutionary history of humankind."

He and colleagues, along with Byoung-Il Bae's lab at Yale University, report the work April 11, 2018, in the journal Nature.

Usually, the outer layer of the human brain, called the cerebral cortex, is large and highly folded. But things can go wrong when the embryonic brain is being built, resulting in a much smaller cortex. This occurs in microcephaly, a condition where babies have significantly smaller heads and brains than normal. Microcephaly can have a genetic root, and has also been linked to recent outbreaks of the Zika virus.

Researchers have identified genes that play a role in the condition, some of which are essential for cerebral cortex growth during embryonic development. Mutations in a gene called ASPM, for example, reduce the size of a human brain by up to 50 percent, making it about the same size as a chimpanzee's brain.

Scientists have studied microcephaly in mice to better understand the condition in humans, but learning about human disorders from mice can be tricky. A mouse brain is a thousand times smaller than a human brain, and lacks several kinds of brain cells that are abundant in humans.

Inactivating Aspm in mice shrinks their brains by only about 10 percent. It's such a subtle defect that these animals, called Aspm knockout mice, provide limited insight into human cortical development, says Walsh, who leads the Allen Discovery Center at Boston Children's Hospital and Harvard Medical School.

This prompted Bae and Walsh's team to genetically inactivate, or "knock out," Aspm in a mammal with a larger, more convoluted cortex, more like that of humans. Ferrets fit that bill because they are a large-brained mammal that breeds quickly and easily, Walsh says. "On the face of it, ferrets may seem a funny choice, but they have been an important model for brain development for thirty years."

Still, scientists haven't done much research on ferret genetics. The whole idea of an Aspm knockout ferret was considered new - and a little risky. In 2013 Walsh pitched his project to HHMI and got the budget boost he needed to make it happen.

His team's Aspm knockout ferret is only the second knockout ferret ever created. One of the study's coauthors, John Engelhardt of the University of Iowa, made the first nearly 10 years ago to study cystic fibrosis.

Walsh, Bae, and their colleagues discovered that their ferrets model human microcephaly much more accurately than do mice. The ferrets displayed severely shrunken brains, with up to 40 percent reduced brain weight. And, as in humans with the condition, cortical thickness and cell organization were preserved.

What's more, the ferrets reveal a possible mechanism for how human brains have grown over evolutionary time. Over the last seven million years, human brain size has tripled. Most of this expansion has occurred within the cerebral cortex.

Indeed, in the mutant ferrets, researchers traced the cerebral cortex deficits to a type of stem cell called outer radial glial cells (ORGs). ORGs are created by stem cells capable of making all sorts of different cells in the cortex.

Walsh's team found that Aspm regulates the timing of the transition between these stem cells and ORGs. This affects the ratio of ORGs to other types of cells. Thus, tweaking Aspm can actually dial up or down the number of nerve cells in the brain, Walsh says, without having to change many genes all at once.

That's a clue that the gene could have played a role in the evolution of the human brain. "Nature had to solve the problem of changing the size of the human brain without having to reengineer the whole thing," Bae says.

Aspm codes for a protein that is part of a cellular complex called the centriole. Walsh and colleagues found that knocking out this gene disturbs the centriole's organization and function, suggesting an underlying biochemical mechanism for the brain deficits seen in the ferrets.

In humans, a few genes associated with centriole proteins, including ASPM, have undergone recent evolutionary changes. These genes might even be important for distinguishing humans from Neanderthals and our closest living relatives, chimpanzees, Walsh says.

Overall, he says, the study demonstrates the advantages of using ferrets to study some human neurological disorders. It also points to new mechanisms at work in the brain development of individuals and in species like humans over evolutionary time.

"It makes sense in retrospect," Walsh says. "The genes that put our brains together during development must have been the genes that evolution tweaked to make our brains bigger."

Matthew B. Johnson et al., "Aspm knockout ferret reveals an evolutionary mechanism governing cerebral cortical size." Nature. Published online April 11, 2018.


Related Links
Howard Hughes Medical Institute
All About Human Beings and How We Got To Be Here


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ABOUT US
Infants recognize links between vocal, facial cues
Washington DC (UPI) Apr 12, 2018
In the first six months of life, babies can draw correlations between visual and vocal cues. Before infants can talk, they use posture, voice and facial expressions to communicate their emotions. New research suggests babies can also interpret emotional cues. Previous studies have found babies show a preference for happy faces and voices during their first six months of life, and can differentiate between the vocal and visual expressions of happiness from cues representing fear, sadness ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ABOUT US
Thin engineered material perfectly redirects and reflects sound

Programming: a highly sought talent in Silicon Valley

Swansea scientists discover greener way of making plastics

A UC3M study analyzes the keys to fragmentation of metallic materials

ABOUT US
India Struggling to Establish Lost Link With Crucial Communication Satellite

Indian scientists lose contact with satellite

Russian Soyuz launches military satellite

India set to launch S-Band satellite for military communications

ABOUT US
ABOUT US
DT Research introduces new rugged tablet with scientific-grade GNSS

China sends twin BeiDou-3 navigation satellites into space

Indra Expands With Four New Stations The Ground Segment Managing Galileo Satellites

GMV leads a project for application of EGNOS to maritime safety

ABOUT US
Airbus aiming to step up A320neo production

Boeing tapped to support P-8A Poseidon training

L3 wins Navy contract for fighter aircraft support

Two soldiers killed in Kentucky copter crash: army

ABOUT US
The thermodynamics of computing

Mini toolkit for measurements: New NIST chip hints at quantum sensors of the future

Diamond-based circuits can take the heat for advanced applications

A new kind of quantum bits in two dimensions

ABOUT US
Swarm tracks elusive ocean magnetism

China launches Yaogan-31 remote sensing satellites

New source of global nitrogen discovered: Earth's bedrock

Denmark Hopeful to 'Enter Superliga' With Recent Space Project

ABOUT US
Trouble in Paradise: Tourism surge lashes Southeast Asia's beaches

French startup Plume out to crowd-source air quality

Swamp microbe has pollution-munching power

Agricultural fires can double Delhi pollution during peak burning season









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.