Space Industry and Business News  
TECH SPACE
Multifunctional dream ceramic matrix composites are born
by Staff Writers
Osaka, Japan (SPX) Dec 12, 2018

(Upper left) This is a structure of Ti-dispersed AI2O3 composites (Lower left) Ti content dependency of fracture roughness and electrical resistivity (Middle) Nanostructure of the surface of AI2O3 composites produced via chemical and heat treatments (Right) Discolored by the photocatalytic activity of AI2O3 composites after chemical and heat treatments.

Researchers at Osaka University produced composites consisting of alumina (AI2O3) ceramics and titanium (Ti), namely AI2O3/Ti composites. They designed a percolation structure for forming a continuous conduction pathway by dispersing fine-sized Ti particles into an AI2O3 matrix, optimizing the particle size of metallic Ti powder and sintering processes.

hey improved fracture toughness and electrical conductivity of AI2O3/Ti composites while simultaneously giving them photocatalytic ability through chemical and/or thermal treatment. (Figure 1)

Various types of metal-ceramic composites have been researched and developed, but their combination and fine structures were limited.

In particular, the combination of ceramics such as alumina used as matrices and titanium, a biocompatible metal, has a problem in that the structure of composites is not uniform because of the high reactivity of titanium (oxidation happens and chemical compounds are produced) and the large particle size of commercially-available Ti powder (several tens of micrometers).

Thus, it was difficult to produce composites that have advantages of both ceramics and metal: that is, composites in which metallic Ti powder is homogeneously dispersed in the matrix and has excellent mechanical properties.

The group prepared ball-milled titanium hydride (TiH2) fine powder mixed with alumina powder, producing AI2O3/Ti composites using a method based on the in situ decomposition of TiH2 to Ti and simultaneous sintering with Al2IO3, which process inhibited AI2O3 dissolution into Ti by diffusion through interfacial reaction between AI2O3 and Ti during sintering.

As a result, they minimized reactivity of Ti and AI2O3 to disperse significantly finer and more homogeneous Ti (compared to those produced with conventional methods) in AI2O3, realizing composites with a percolation structure by controlling the content of added Ti.

In this way, the group improved fracture toughness of inherently brittle AI2O3 through dispersion of fine Ti particles into AI2O3 and, due to percolation of metallic Ti particles, contributing electrical conductivity to insulator ceramics AI2O3. They also demonstrated that AI2O3 ceramics could be machined by electrical discharge machining like metals. (Usually, ceramics are not electrically conductive.)

In addition, they formed a nano-porous- or nanorod- structured titania layer on the surface of the composite by selectively oxidizing Ti via NaOH treatment and/or heat treatment. Through this, they demonstrated that the photocatalytic ability to break down organic substances could also simultaneously be given to AI2O3/Ti composites.

Group leader Tohru Sekino says, "AI2O3/Ti composites will be used as ceramic matrix composites that have excellent mechanical properties and can be machined by electrical discharge machining. They will also be used for industrial products and biomaterials as new multi-functional composites that have an active surface layer with antibacterial properties and a photocatalytic ability to break down pollutants."


Related Links
Osaka University
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
SUTD researchers discover new black silver nanomaterial
Singapore (SPX) Dec 04, 2018
Researchers from the Singapore University of Design and Technology (SUTD) have engineered a new inexpensive nanomaterial that has applications ranging from biomolecule detectors to solar energy conversion. The key to the material's remarkable performance is its nanostructure, which strongly interacts with visible and infrared light. This nanomaterial is easily coated onto other materials, including plastics, thus providing them with new functions. The nanomaterial can be used to improve sola ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Radiation experiment flies on record-setting SpaceX launch dedicated entirely to small satellites

Astroscale enters technical cooperation with European Space Agency

Supercomputers without waste heat

Multifunctional dream ceramic matrix composites are born

TECH SPACE
Shape-shifting origami could help antenna systems adapt on the fly

Global Ku-Band HTS platform provides government customers with unprecedented solutions

US Space Force Takes Over Satellite Purchases to Boost Warfighter Communication

Boeing tapped by Air Force for jam-resistant satellite comms terminals

TECH SPACE
TECH SPACE
Lockheed Martin prepares GPS III satellite for SpaceX launch

First Lockheed Martin-Built GPS III satellite encapsulated for Dec. 18 launch

Spire Taps Galileo for Space-Based Weather Data

UK will build its own satellite-navigation system after Brexit

TECH SPACE
US military declares five missing Marines dead after Japan crash

Germany opens negligent homicide probe in Mali Airbus chopper crash

Aircraft readiness goals for 2019 unlikely to be reached, officials say

Navy taps Sikorsky for database to support CH-53K helicopters

TECH SPACE
Bringing advanced microelectronics to revolutionary defense applications

ETRI exchanged quantum information on daylight in a free-space quantum key distribution

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

TECH SPACE
Copernicus Sentinel-5P ozone boosts daily forecasts

New ammonia emission sources detected from space

First Radar Image from ICEYE-X2 Published Only A Week After Launch

Ball Aerospace delivers pollution monitoring instrument to NASA

TECH SPACE
Waste plant fire stokes Italy garbage crisis

Madrid temporarily bans 'oldest, most polluting' vehicles

Slow recycler Turkey seeks better uses for its trash

Lynas mulls 'legal options' after Malaysia imposes new conditions









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.