Subscribe free to our newsletters via your
. Space Industry and Business News .




FARM NEWS
Move over Arabidopsis, there's a new model plant in town
by Staff Writers
Columbia MO (SPX) Jun 05, 2015


A radio tracer chamber at Brookhaven National Laboratory was needed to test if Setaria viridis actually used nitrogen produced by the bacteria. The scientists allowed only one leaf to contact the radioactive nitrogen, so they could truly tell if it was being used. Image courtesy of Fernanda Amaral. For a larger version of this image please go here.

As farmers spend billions of dollars spreading nitrogen on their fields this spring, researchers at the University of Missouri are working toward less reliance on the fertilizer.

Less dependence on nitrogen could start with a simple type of grass, Setaria viridis, and its relationship with bacteria. The plant promises to lay groundwork for scientists exploring the relationship between crops and the fixing nitrogen bacteria that provide them the nitrogen amount plants need daily.

"In science sometimes you have to believe because we often work with such small microorganisms and DNA that you cannot see," said Fernanda Amaral, co-author and MU postdoctoral fellow at Bond Life Sciences Center. "Before this research no one had actually proved such evidence that nitrogen excreted by bacteria could be incorporated into plants like this."

Biological nitrogen fixation - where diazotrophic bacteria fix atmospheric nitrogen and convert it to ammonium - provides a free way for plants to alter and absorb the nutrient. Farmers have long known that legumes like soybean fix nitrogen due to the symbiosis with bacteria in the soil through development of nodules on their roots, but since grasses like corn and rice don't form this specialized structures that relationship has been trickier to explore.

Yet in fact, this team's experiments showed the grass Setaria viridis received 100 percent of its nitrogen needs from the bacteria Azospirillum brasilense when associated with plant root surfaces.

"I believed in these bacteria's ability, but I was really surprised that the amount of nitrogen fixed by the bacteria was 100 percent," Amaral said. "That's really cool, and that nitrogen can make so much of a difference in the plant."

Worldwide farmers used more than 100 million tons of nitrogen on fields in 2011, according to the United Nations Food and Agriculture Organization. In the same year, the U.S. alone produced and imported more than $37 billion in nitrogen.

This grass can serve as a simple model for research, standing in for grass relatives such as corn, rice and sugarcane to explore a similar relationship in those crops. This research, 'Robust biological nitrogen fixation in a model grass-bacterial association,' was published in the March 2015 issue of the Plant Journal.

Proving that this grass actually uses nitrogen excreted from the bacteria took some clever experiments, a global collaboration and a nuclear reactor.

MU researchers in the lab of Gary Stacey, a Bond LSC investigator, partnered with scientists in Brazil and at Brookhaven National Laboratory in New York to find a robust plant model system.

They screened more than 30 genotypes of Setaria viridis grass, looking for a strong nitrogen fixing response when colonized with three different bacteria strains. They germinated the seeds in Petri dishes and inoculated those three days after germination with a bacterial solution. Then plants were transplanted into soil containing no nutrients. By eliminating nitrogen in the soil, the scientists were able to make sure that the bacteria was the only source of nitrogen for plant.

The team settled on Azospirillum brasilense bacteria, which has been used commercially in South America to improve crop plant growth. It colonizes the surface of the roots and showed the greatest amount of plant growth when associated with plant roots.

Proving that the bacteria truly fixed the nitrogen used by the plant, required exposing plants to radioactive isotopes at Brookhaven National Laboratory. That began with Nitrogen 13, an unstable radio isotope that showed exactly where and how quickly this nutrient was taken up from the bacteria.

"Nitrogen 13 is really sensitive matter with a half-life of less than 10 minutes, and we first thought there wouldn't be that much nitrogen fixed by the plant," Amaral said. "We administered Nitrogen 13 only on the roots, quickly scanned the samples and calculated how much of the nitrogen the plants assimilated based on the decay analysis of the tracer."

This experiment, paired with several others, showed that this model grass truly incorporated the nitrogen released by the bacteria and metabolizes it in several components.

But why does a type of grass that doesn't produce food matter so much?

The answer is time and simplicity.

"Corn is really good at responding to bacterial inoculation, but it's very big and takes a long time to produce seeds and also the genome is complex," said Beverly Agtuca, an MU Ph.D. student who worked on the study. "Setaria viridis is a small plant that can produce a lot of seeds faster, has a pretty simple genome and can serve as a model for research."

That makes it perfect to explore how the plant actually uses its bacterial partners, and labs around the world are already using this plant model for research.

For the Stacey lab, the next step is to pinpoint the gene in the model grass that makes this possible.

"We want to identify the genes responsible for the interaction between plant and bacteria and meanly the ones involved with the nitrogen uptake," Fernanda said.

"We hope that will allow us to improve plant growth based on the gene to further study. We believe that our findings can stimulate others studies at this area, which seems to be a promise plant friendly way to apply for promoting a sustainable agriculture, especially to crop systems including bioenergy grass."

Amaral and Agtuca work in the lab of Gary Stacey at Bond LSC. Stacey is a Bond LSC investigator and a curators professor of plant sciences in the College of Agriculture, Food and Natural Resources at the University of Missouri. Collaborators included researchers at Brookhaven National Laboratory, State University of New York, Federal University of Parana in Brazil, and Federal University of Santa Catarina in Brazil.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Missouri-Columbia
Farming Today - Suppliers and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








FARM NEWS
New planning toolset gives farmers more options for improving water quality
Madison WI (SPX) Jun 04, 2015
With agriculture increasingly on the hook to improve water quality, curb erosion, and meet other environmental goals, it only makes sense to target soil and water conservation practices to the places on the landscape where they'll do the most good. Exactly how to achieve this is the catch, but a promising new solution is now at the ready, thanks to research led by the USDA-Agricultural Research ... read more


FARM NEWS
High-temperature superconductivity in atomically thin films

New tunable laser diode for high-frequency efficiency

Golden shipping container transports Americans to parts unknown

Spinning a new version of silk

FARM NEWS
Continued Momentum for Commercial Satellite Acquisition Reform

IOC status for upgraded French AWACS aircraft

Russian Radio-Electronic Forces to Conduct Drills in Armenian Mountains

Thales granted multiple-award IDIQ contract for Army radios

FARM NEWS
Recent Proton loss to push up launch costs warns manufacturer

Air Force Certifies SpaceX for National Security Space Missions

SpaceX cleared for US military launches

Ariane 5's second launch of 2015

FARM NEWS
GLONASS to Go on Stream in 2015

Satellites make a load of difference to bridge safety

Advanced Navigation Releases Interface and Logging Unit

Raytheon delivers hardware for next-gen USAF GPS system

FARM NEWS
The rise and fall of giant balloons on the edge of space

Northrop Grummans planned upgrade for B-2 passes CDR

Britain invests in military helicopter simulation training

CAE's CH-47 simulators pass on-site acceptance testing

FARM NEWS
Exploiting the extraordinary properties of a new semiconductor

New chip makes testing for antibiotic-resistant bacteria faster, easier

A chip placed under the skin for more precise medicine

Collaboration could lead to biodegradable computer chips

FARM NEWS
Astronomers make 3-D movies of plasma tubes

NASA Soil Moisture Mission Begins Science Operations

In the Field: SMAP Gathers Soil Data in Australia

Mischief makers prompt Google to halt public map edits

FARM NEWS
Spain's crisis has taken environmental toll: Greenpeace

Researchers say anti-pollution rules have uncertain effects

Greenpeace India vows to win 'malicious' funds battle

Wetlands continue to reduce nitrates




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.