Space Industry and Business News  
CLIMATE SCIENCE
More 'reactive' land surfaces cooled the Earth down
by Staff Writers
Potsdam, Germany (SPX) Jul 08, 2019

The 'reactivity' of the land surface. If there are more non-weathered mineral grains such as feldspar or mica in the soil, it can react as extensively chemically with little CO2 as an already heavily weathered soil with a lot of CO2.

From time to time, there have been long periods of cooling in Earth's history. Temperatures had already fallen for more than ten million years before the last ice age began about 2.5 million years ago.

At that time the northern hemisphere was covered with massive ice masses and glaciers. A geoscientific paradigm, widespread for over twenty years, explains this cooling with the formation of the large mountain ranges such as the Andes, the Himalayas and the Alps.

As a result, more rock weathering has taken place, the paradigm suggests. This in turn removed more carbon dioxide (CO2) from the atmosphere, so that the 'greenhouse effect' decreased and the atmosphere cooled. This and other processes eventually led to the 'ice Age'.

In a new study, Jeremy Caves-Rugenstein from ETH Zurich, Dan Ibarra from Stanford University and Friedhelm von Blanckenburg from the GFZ German Research Centre for Geosciences in Potsdam were able to show that this paradigm cannot be upheld.

According to the paper, weathering was constant over the period under consideration. Instead, increased 'reactivity' of the land surface has led to a decrease in CO2 in the atmosphere, thus cooling the Earth. The researchers published the results in the journal Nature.

A second look after isotope analysis
The process of rock weathering, and especially the chemical weathering of rocks with carbonic acid, has controlled the Earth's climate for billions of years. Carbonic acid is produced from CO2 when it dissolves in rainwater. Weathering thus removes CO2 from the Earth's atmosphere, precisely to the extent that volcanic gases supplied the atmosphere with it.

The paradigm that has been widespread so far states that with the formation of the large mountains ranges in the last 15 million years, erosion processes have increased - and with them also the CO2-binding rock weathering. Indeed, geochemical measurements in ocean sediments show that the proportion of CO2 in the atmosphere has strongly decreased during this phase.

"The hypothesis, however, has a big catch," explains Friedhelm von Blanckenburg of GFZ. "If the atmosphere had actually lost as much CO2 as the weathering created by erosion would have caused, it would hardly have had any CO2 left after less than a million years. All water would have had frozen to ice and life would have had a hard time to survive. But that was not the case."

That these doubts are justified, was already shown by von Blanckenburg and his colleague Jane Willenbring in a 2010 study, which appeared in Nature likewise. "We used measurements of the rare isotope beryllium-10 produced by cosmic radiation in the Earth's atmosphere and its ratio to the stable isotope beryllium-9 in ocean sediment to show that the weathering of the land surface had not increased at all," says Friedhelm von Blanckenburg.

The land's surface has become more 'reactive'
In the study published now, Caves-Rugenstein, Ibarra and von Blanckenburg additionally used the data of stable isotopes of the element lithium in ocean sediments as an indicator for the weathering processes.

They wanted to find out how, despite constant rock weathering, the amount of CO2 in the atmosphere could have decreased. They entered their data into a computer model of the global carbon cycle.

Indeed, the results of the model showed that the potential of the land surface to weather has increased, but not the speed at which it weathered. The researchers call this potential of weathering the 'reactivity' of the land surface.

"Reactivity describes how easily chemical compounds or elements take part in a reaction," explains Friedhelm von Blanckenburg.

If there are more non-weathered and therefore more reactive rocks at the surface, these can in total react as extensively chemically with little CO2 in the atmosphere as already heavily weathered rocks would do with a lot of CO2. The decrease in CO2 in the atmosphere, which is responsible for the cooling, can thus be explained without an increased speed of weathering.

"However, a geological process is needed to rejuvenate the land surface and make it more 'reactive'," says Friedhelm von Blanckenburg.

"This does not necessarily have to be the formation of large mountains. Similarly, tectonic fractures, a small increase in erosion or the exposure of other types of rock may have caused more material with weathering potential to show at the surface. In any case, our new hypothesis must trigger geological rethinking regarding the cooling before the last ice age."

Research paper


Related Links
GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre
Climate Science News - Modeling, Mitigation Adaptation


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CLIMATE SCIENCE
UN chief urges action to avert climate change 'catastrophe'
Abu Dhabi (AFP) June 30, 2019
UN chief Antonio Guterres said climate-related devastation was striking the planet on a weekly basis and warned Sunday that urgent action must be taken to avoid a catastrophe. "We are here because the world is facing a grave climate emergency," Guterres told a two-day Abu Dhabi Climate Meeting to prepare for a Climate Action Summit in New York in September. "Climate disruption is happening now... It is progressing even faster than the world's top scientists have predicted," the UN secretary gene ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CLIMATE SCIENCE
The world needs a global agenda for sand

Researchers verify 70-year-old theory of turbulence in fluids

Gene-editing enzymes imaged in 3D

First observation of native ferroelectric metal

CLIMATE SCIENCE
AEHF-5 encapsulated and prepared for launch

Corps begins fielding mobile satellite communication system

AFRL demonstrates world's first daytime free-space quantum communication enabled by adaptive optics

Harris to build new satellite connection system prototype for USAF

CLIMATE SCIENCE
CLIMATE SCIENCE
Planes landing in Israel see GPS signals disrupted

NASA Eyes GPS at the Moon for Artemis Missions

Lockheed Martin Delivers GPS III Contingency Operations

China to complete BeiDou-3 satellite system by 2020

CLIMATE SCIENCE
France to impose green tax on plane tickets

Second deadly crash of German army helicopter in a week

F-22 Raptor stealth aircraft arrive in Qatar

Pratt and Whitney to build spare F-35A/C engines in $358M contract

CLIMATE SCIENCE
Atomic 'patchwork' using heteroepitaxy for next generation semiconductor devices

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing

Hong Kong's extradition law jolts business community

Laser technique could unlock use of tough material for next-generation electronics

CLIMATE SCIENCE
Scientists discover the biggest seaweed bloom in the world

Winter monsoons became stronger during geomagnetic reversal

SSTL expertise enables new space mission for the FORMOSAT-7 weather constellation

Satellite image shows temperatures soaring across Europe

CLIMATE SCIENCE
Cruise ship in Venice near-miss just weeks after dock incident

Indonesia to send 210 tonnes of waste back to Australia

US waste driving global garbage glut: study

Ecotax championed, contested and still marginal in EU









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.