Space Industry and Business News  
TECH SPACE
Molybdenum disulfide holds promise for light absorption
by Staff Writers
Houston TX (SPX) May 08, 2016


Using a layer of molybdenum disulfide less than one nanometer thick, researchers in Rice University's Thomann lab were able to design a system that absorbed more than 35 percent of incident light in the 400- to 700-nanometer wavelength range. Image courtesy Thomann Group and Rice University. For a larger version of this image please go here.

Mechanics know molybdenum disulfide (MoS2) as a useful lubricant in aircraft and motorcycle engines and in the CV and universal joints of trucks and automobiles. Rice University engineering researcher Isabell Thomann knows it as a remarkably light-absorbent substance that holds promise for the development of energy-efficient optoelectronic and photocatalytic devices.

"Basically, we want to understand how much light can be confined in an atomically thin semiconductor monolayer of MoS2," said Thomann, assistant professor of electrical and computer engineering and of materials science and nanoengineering and of chemistry. "By using simple strategies, we were able to absorb 35 to 37 percent of the incident light in the 400- to 700-nanometer wavelength range, in a layer that is only 0.7 nanometers thick."

Thomann and Rice graduate students Shah Mohammad Bahauddin and Hossein Robatjazi have recounted their findings in a paper titled "Broadband Absorption Engineering To Enhance Light Absorption in Monolayer MoS2," which was recently published in the American Chemical Society journal ACS Photonics. The research has many applications, including development of efficient and inexpensive photovoltaic solar panels.

"Squeezing light into these extremely thin layers and extracting the generated charge carriers is an important problem in the field of two-dimensional materials," she said. "That's because monolayers of 2-D materials have different electronic and catalytic properties from their bulk or multilayer counterparts."

Thomann and her team used a combination of numerical simulations, analytical models and experimental optical characterizations. Using three-dimensional electromagnetic simulations, they found that light absorption was enhanced 5.9 times compared with using MoS2 on a sapphire substrate.

"If light absorption in these materials was perfect, we'd be able to create all sorts of energy-efficient optoelectronic and photocatalytic devices. That's the problem we're trying to solve," Thomann said.

She is pleased with her lab's progress but concedes that much work remains to be done. "The goal, of course, is 100 percent absorption, and we're not there yet."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Rice University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
JILA extends laser 'combing' method to identify large, complex molecules
Boulder CO (SPX) May 06, 2016
JILA physicists have extended the capability of their powerful laser "combing" technique to identify the structures of large, complex molecules of the sort found in explosives, pharmaceuticals, fuels and the gases around stars. The advance, described in a Nature paper published online May 4, 2016 was made possible by a cooling method developed by Harvard University researchers, who co-auth ... read more


TECH SPACE
Cavitation intensity enhanced using pressure at bubble collapse region

Hybrid nanoantennas offer new platform for ultradense data recording

Squished cells could shape design of synthetic materials

Engineers create a better way to boil water

TECH SPACE
Elbit receives European order for tactical radios

Haigh-Farr showcases Antenna Solutions at DATT Summit

U.S. Army orders radios for Mid-East, African countries

Harris supplies tactical radios to African country

TECH SPACE
SpaceX to launch Japanese satellite early Friday

New small launch vehicles

Vector Space Systems aims to redefine space commerce

Spaceport Camden Partners with NASA Innovation Competition

TECH SPACE
Air Force awards GPS 3 launch services contract

India gets homegrown satellite navigation system

ISRO launch campaign for IRNSS-1G progressing smoothly

India a step away from joining GPS club

TECH SPACE
New discovery may help engineers design quieter jet airplanes

Saab to continue Swedish military helicopter support

China Eastern Airlines to buy 35 planes from Airbus and Boeing

Raytheon producing targeting system variant for Air Force

TECH SPACE
Researchers create a first frequency comb of time-bin entangled qubits

A brand-new way to produce electron spin currents

NREL offers path to high-performance 2-D semiconductor devices

Atoms placed precisely in silicon can act as quantum simulator

TECH SPACE
Cracking the Code in Satellite Data

Satellite coverage for polar bears and penguins

Sentinel-1B delivers

BlackSky inks US deal to enhance global decision-making

TECH SPACE
Mexico City businesses say smog alert cost $300 mn

Diesel cab drivers protest ban in India's smog-choked capital

Tonnes of clams die in Vietnam as toxic leak fears mount

Computers play a crucial role in preserving the Earth









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.