Subscribe free to our newsletters via your
. Space Industry and Business News .




NANO TECH
Molecular Traffic Jam Makes Water Move Faster through Nanochannels
by Staff Writers
Chicago IL (SPX) Feb 11, 2014


Illustration only.

Cars inch forward slowly in traffic jams, but molecules, when jammed up, can move extremely fast. New research by Northwestern University researchers finds that water molecules traveling through tiny carbon nanotube pipes do not flow continuously but rather intermittently, like stop-and-go traffic, with unexpected results.

"Previous molecular dynamics simulations suggested that water molecules coursing through carbon nanotubes are evenly spaced and move in lockstep with one another," said Seth Lichter, professor of mechanical engineering at Northwestern's McCormick School of Engineering and Applied Science.

"But our model shows that they actually move intermittently, enabling surprisingly high flow rates of 10 billion molecules per second or more."

The research is described in an Editor's Choice paper, "Solitons Transport Water through Narrow Carbon Nanotubes," published January 27 in the journal Physical Review Letters.

The findings could resolve a quandary that has baffled fluid dynamics experts for years. In 2005, researchers - working under the assumption that water molecules move through channels in a constant stream - made a surprising discovery: water in carbon nanotubes traveled 10,000 times faster than predicted.

The phenomenon was attributed to a supposed smoothness of the carbon nanotubes' surface, but further investigation uncovered the counterintuitive role of their inherently rough interior.

Lichter and post-doctoral researcher Thomas Sisan performed new simulations with greater time resolution, revealing localized variations in the distribution of water along the nanotube. The variations occur where the water molecules do not line up perfectly with the spacing between carbon atoms - creating regions in which the water molecules are unstable and so propagate exceedingly easily and rapidly through the nanotube.

Nanochannels are found in all of our cells, where they regulate fluid flow across cell membranes. They also have promising industrial applications for desalinating water. Using the newly discovered fluid dynamics principles could enable other applications such as chemical separations, carbon nanotube-powered batteries, and the fabrication of quantum dots, nanocrystals with potential applications in electronics.

.


Related Links
Northwestern's McCormick School of Engineering and Applied Science
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
Physicists at Mainz University build pilot prototype of a single ion heat engine
Mainz, Germany (SPX) Feb 12, 2014
Scientists at Johannes Gutenberg University Mainz (JGU) and the University of Erlangen-Nuremberg are working on a heat engine that consists of just a single ion. Such a nano-heat engine could be far more efficient than, for example, a car engine or a coal-fired power plant. A usual heat engine transforms heat into utilizable mechanical energy with the corresponding efficiency of an Otto en ... read more


NANO TECH
Space junk endangers mankind's usual course of life

Scientists use 'voting' and 'penalties' to overcome quantum errors

Theorists predict new forms of exotic insulating materials

From Stone Age to Space Age: bone pigment helps probe

NANO TECH
US Marines Reach Milestone For New General Dynamics-built Aviation CCS

MUOS Satellite Tests Show Extensive Reach In Polar Communications Capability

Space squadron optimizes wideband communication constellations

GA-ASI and Northrop Showcase Unmanned Electronic Attack Capabilities

NANO TECH
Airbus Defence and Space wins new ESA contract for Ariane 6

Turkey launches satellite to increase Internet speed

Russia-Kazakhstan Working Group to Report on Proton Launches

Russian Telecoms Satellites Readied for March Launch

NANO TECH
Sochi Olympic transport controlled from space using GLONASS satellite

GAGAN System reaches certification milestone in India

Lockheed Martin Powers On Second GPS 3 Satellite In Production

India to launch three navigation satellites this year

NANO TECH
Black box found as Algeria seeks cause of deadly plane crash

Planetary Scientists Get Into Balloon Game

Lockheed Martin Files For FAA Type Design Update

Turkey vows to go ahead with new airport despite court order

NANO TECH
New way to measure electron pair interactions

Helical electron and nuclear spin order in quantum wires

New Research Leads To Multifunctional Spintronic Smart Sensors

Ballistic transport in graphene suggests new type of electronic device

NANO TECH
Surveying storm damage from space: UK satellite provides images of Somerset floods

NASA-USGS Landsat 8 Satellite Celebrates First Year of Success

Largest Flock of Earth-Imaging Satellites Launch into Orbit From ISS

Olympics: Eye in the sky give viewers dramatic new angle

NANO TECH
Tuna study reveals oil pollution causes heart problems

S. Korea fisheries minister sacked over oil spill

France to start pumping out Spanish ship broken in three

Cooperative SO2 and NOx aerosol formation in haze pollution




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement