Space Industry and Business News  
FROTH AND BUBBLE
Mobility without particulates
by Staff Writers
Stuttgart, Germany (SPX) Jan 15, 2021

DLR vehicle concept ZEDU-1. DLR image

The environment is polluted not only by exhaust gases from internal combustion engines, but also by particulate matter. In the transport sector, particulate matter is produced during the combustion process and in the abrasion of tyres and brakes.

The German Aerospace Center (Deutsches Zentrum fur Luft- und Raumfahrt; DLR) is currently developing and testing an innovative vehicle concept as part of its Zero Emission Drive Unit - Generation 1 (ZEDU-1) project. The goal is to avoid particulate emissions as far as possible.

When combined with energy from renewable sources and electric propulsion systems, this can make mobility almost entirely emission free. "We are concentrating on components that have received little attention in the past.

The focus is on a particulate-free braking system and the collection and absorption of matter from tyre wear, so that this does not enter the environment," says the project leader and DLR scientist Franz Philipps. The DLR Institute of Vehicle Concepts in Stuttgart, engineering company HWA and surface specialist Langlet are all working together on the project.

Project objectives - zero brake abrasion and negligible tyre wear
Abrasion of tyres on roads is responsible for more than a quarter of microplastic emissions worldwide. When it rains, these tiny particles make their way into the drainage system and thus into the water cycle. In Germany alone, this amounts to approximately 110,000 tonnes of matter a year.

Braking also causes the abrasion of brake discs and brake pads. Over 90 percent of the resulting debris takes the form of ultrafine particles. These particles are considered to be particularly harmful to the environment and human health, as they can penetrate deep into our respiratory systems and become lodged there.

"Given these figures, we have set ourselves some ambitious goals. We want to prevent brake abrasion altogether and reduce tyre abrasion by up to 90 percent," says Philipps. "It is important that our concept is highly effective and as compact, versatile and suitable for everyday use as we can make it. This will allow it to be applied directly to cars, commercial vehicles and even rail transport."

Completely rethinking braking systems and wheel arches
The project team is also forging new paths when it comes to the required technologies: "We are taking the brakes out of the wheel and integrating them into the drivetrain. This allows us to build everything in a very compact way. In conjunction with specially developed high-performance electronics, we are able to recover the braking energy almost completely," says Philipps.

The team is also studying and combining different braking concepts. One of these is a special kind of disc brake, which works mechanically and acts as a closed system. The brake pads are kept in an oil bath. Brake abrasion takes place within the oil, which is constantly pumped through a filter and cleaned. Another approach is induction brakes, which are wear-free and use the force of magnetic fields to generate a braking effect.

A newly designed wheel arch is intended to minimise tyre wear, with an aerodynamic shape that creates negative pressure while driving. Any wear thus occurs in a specific location. The resulting particles are absorbed by a filter system, similar to a vacuum cleaner.

In the test facility and on the road - practical trials with a research vehicle
Over the course of the project, the partners have set up the newly developed components to create demonstrators. Researchers have integrated these into a specially constructed test vehicle. They will then conduct test drives on normal roads and using the institute's rolling road to determine how well the new components are able to reduce fine particulate emissions under realistic conditions.

For these tests, the researchers are working alongside the DLR Institute of Combustion Technology, also based in Stuttgart. This institute has state-of-the-art measurement technologies and a mobile measurement vehicle, which is able to detect and characterise particulate matter down to the ultrafine range. The analyses will focus on the total amount of particulate emissions and the size distribution of the particles.

The Baden-Wurttemberg Ministry for Economic Affairs, Labour and Housing has invested six million euros in the project.


Related Links
DLR Institute of Vehicle Concepts
Our Polluted World and Cleaning It Up


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


FROTH AND BUBBLE
Seagrass 'Neptune balls' bundle plastic waste
Paris (AFP) Jan 14, 2021
Underwater seagrass in coastal areas appear to trap bits of plastic in natural bundles of fibre known as "Neptune balls," researchers said Thursday. With no help from humans, the swaying plants - anchored to shallow seabeds - may collect nearly 900 million plastic items in the Mediterranean alone every year, they reported in the journal Scientific Reports. "We show that plastic debris in the seafloor can be trapped in seagrass remains, eventually leaving the marine environment through beaching ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

FROTH AND BUBBLE
Saffire Ignites New Discoveries in Space

Physicists propose a new theory to explain one dimensional quantum liquids formation

Seeing in a flash

EOS supports Texas Rocket Engineering Laboratory (TREL) to fuel additive manufacturing education

FROTH AND BUBBLE
Northrop Grumman lands $325M deal for Air Force JSTARS sustainment

ThinKom completes Over-the-Air tests with K/Q-Band antenna on protected comms satellite

Defense, Commerce departments join to find 5G solutions

France signs agreement to purchase Northrop Grumman's E-2D advanced Hawkeye

FROTH AND BUBBLE
FROTH AND BUBBLE
NASA advancing global navigation satellite system capabilities

China sees booming satellite navigation, positioning industry

Galileo satellites help rescue Vendee Globe yachtsman

BeiDou navigation base in south China targets services in ASEAN

FROTH AND BUBBLE
AFRL, AFLCMC Laboratory collaboration addresses pilot oxygen concerns

Air Force task force studies accountability throughout the command

Erdogan seeks solution with Biden over F-35 jets

Northrop Grumman to Enable New F-35 Warfighting Capability

FROTH AND BUBBLE
Transforming quantum computing's promise into practice

ASML earnings up despite pandemic

The changing paradigm of next-generation semiconductor memory development

Light-based processors boost machine-learning processing

FROTH AND BUBBLE
Satellite-powered app to spot loneliness in hotspots in UK cities

Earth Observation data could represent a billion-dollar opportunity for Africa

Genesis of blue lightning into the stratosphere detected from ISS

Counting elephants from space

FROTH AND BUBBLE
A sea of rubbish: ocean floor landfills

Reducing air pollution 'could prevent 50,000 EU deaths'

Eliminating microplastics in wastewater directly at the source

Mobility without particulates









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.