Space Industry and Business News  
TIME AND SPACE
Microscopic wormholes possible in theory
by Staff Writers
Oldenburg, Germany (SPX) Mar 10, 2021

The researchers chose a comparatively simple "semiclassical" approach. They combined elements of relativity theory with elements of quantum theory and classic electrodynamics theory. In their model they consider certain elementary particles such as electrons and their electric charge as the matter that is to pass through the wormhole. As a mathematical description, they chose the Dirac equation, a formula that describes the probability density function of a particle according to quantum theory and relativity as a so-called Dirac field. (stock image only)

Wormholes play a key role in many science fiction films - often as a shortcut between two distant points in space. In physics, however, these tunnels in spacetime have remained purely hypothetical. An international team led by Dr. Jose Luis Blazquez-Salcedo of the University of Oldenburg has now presented a new theoretical model in the science journal Physical Review Letters that makes microscopic wormholes seem less far-fetched than in previous theories.

Wormholes, like black holes, appear in the equations of Albert Einstein's general theory of relativity, published in 1916. An important postulate of Einstein's theory is that the universe has four dimensions - three spatial dimensions and time as the fourth dimension. Together they form what is known as spacetime, and spacetime can be stretched and curved by massive objects such as stars, much as a rubber sheet would be curved by a metal ball sinking into it.

The curvature of spacetime determines the way objects like spaceships and planets, but also light, move within it. "In theory, spacetime could also be bent and curved without massive objects," says Blazquez-Salcedo, who has since transferred to the Complutense University of Madrid in Spain.

In this scenario, a wormhole would be an extremely curved region in spacetime that resembles two interconnected funnels and connects two distant points in space, like a tunnel. "From a mathematical perspective such a shortcut would be possible, but no one has ever observed a real wormhole," the physicist explains.

Moreover, such a wormhole would be unstable. If for example a spaceship were to fly into one, it would instantly collapse into a black hole - an object in which matter disappears, never to be seen again. The connection it provided to other places in the universe would be cut off. Previous models suggest that the only way to keep the wormhole open is with an exotic form of matter that has a negative mass, or in other words weighs less than nothing, and which only exists in theory.

However, Blazquez-Salcedo and his colleagues Dr. Christian Knoll from the University of Oldenburg and Eugen Radu from the Universidade de Aveiro in Portugal demonstrate in their model that wormholes could also be traversable without such matter.

The researchers chose a comparatively simple "semiclassical" approach. They combined elements of relativity theory with elements of quantum theory and classic electrodynamics theory. In their model they consider certain elementary particles such as electrons and their electric charge as the matter that is to pass through the wormhole. As a mathematical description, they chose the Dirac equation, a formula that describes the probability density function of a particle according to quantum theory and relativity as a so-called Dirac field.

As the physicists report in their study, it is the inclusion of the Dirac field into their model that permits the existence of a wormhole traversable by matter, provided that the ratio between the electric charge and the mass of the wormhole exceeds a certain limit.

In addition to matter, signals - for example electromagnetic waves - could also traverse the tiny tunnels in spacetime. The microscopic wormholes postulated by the team would probably not be suitable for interstellar travel. Moreover, the model would have to be further refined to find out whether such unusual structures could actually exist. "We think that wormholes can also exist in a complete model," says Blazquez-Salcedo.

Research paper


Related Links
Models of Gravity
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
Most distant cosmic jet providing clues about early universe
Charlottesville VA (SPX) Mar 09, 2021
Astronomers using the National Science Foundation's Karl G. Jansky Very Large Array (VLA) and Very Long Baseline Array (VLBA) have found and studied the most distant cosmic jet discovered so far - a jet of material propelled to nearly the speed of light by the supermassive black hole in a quasar some 13 billion light-years from Earth. The quasar is seen as it was when the universe was only 780 million years old, and is providing scientists with valuable information about how galaxies evolved and superma ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Developing Virtual Partners to Assist Military Personnel

An astronaut's guide to out-of-Earth manufacturing

Thyssenkrupp Aerospace lands order from RUAG International

Lights on for silicon photonics

TIME AND SPACE
Airbus, Fujitsu and Thales in team up for UK army future tactical communication program

SES Government solutions provides high-throughput loopback services to US Dept of Defense

USAF: Anti-jamming tests of military communications satellites a success

India to upgrade military comms with advanced radios to boost net-centric warfare capability

TIME AND SPACE
TIME AND SPACE
A better way to measure acceleration

China Satellite Navigation Conference to highlight spatiotemporal data

Latest progress in China's BeiDou Navigation Satellite System

BAE Systems announces $247M contract for M-code GPS receivers

TIME AND SPACE
Eleven Turkish soldiers killed in helicopter crash

Customising individual flight routes for more climate friendly outcomes

Air Force testing prototype shelters for B-21 Raider

Marines' F/A-18 Hornets finish final aircraft carrier deployment

TIME AND SPACE
How the world ran out of semiconductors

EU wants to double microchip share by 2030

New microcomb could help discover exoplanets and detect diseases

A quantum internet is closer to reality, thanks to this switch

TIME AND SPACE
ESA Eyes On Earth: Galapagos Islands

How much longer will the oxygen-rich atmosphere be sustained on Earth?

Contract signed to build Arctic weather satellite

A mission for Earth's future

TIME AND SPACE
Flamingos poisoned by illegal lead pellets in Greek lagoon

71kg of waste found in stray Indian cow's stomach

EU court raps Britain for air pollution

Lebanese clear tar pollution from turtle beach









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.