Space Industry and Business News  
SOLAR DAILY
Microscopic 'sunflowers' for better solar panels
by Lindsay Brownell for Harvard News
Boston MA (SPX) Dec 06, 2018

Micropillars made of a light-responsive liquid crystal elastomer (LCE) re-orient themselves to follow light coming from different directions, which could lead to more efficient solar panels. Credit: Wyss Institute at Harvard University

The pads of geckos' notoriously sticky feet are covered with setae - microscopic, hairlike structures whose chemical and physical composition and high flexibility allow the lizard to grip walls and ceilings with ease.

Scientists have tried to replicate such dynamic microstructures in the lab with a variety of materials, including liquid crystal elastomers (LCEs), which are rubbery networks with attached liquid crystalline groups that dictate the directions in which the LCEs can move and stretch. So far, synthetic LCEs have mostly been able to deform in only one or two dimensions, limiting the structures' ability to move throughout space and take on different shapes.

Now, a group of scientists from Harvard's Wyss Institute for Biologically Inspired Engineering and John A. Paulson School of Engineering and Applied Sciences (SEAS) has harnessed magnetic fields to control the molecular structure of LCEs and create microscopic three-dimensional polymer shapes that can be programmed to move in any direction in response to multiple types of stimuli. The work, reported in PNAS, could lead to the creation of a number of useful devices, including solar panels that turn to follow the sun for improved energy capture.

"What's critical about this project is that we are able to control the molecular structure by aligning liquid crystals in an arbitrary direction in 3D space, allowing us to program nearly any shape into the geometry of the material itself," said first author Yuxing Yao, who is a graduate student in the lab of Wyss Founding Core Faculty Member Joanna Aizenberg, Ph.D.

The microstructures created by Yao and Aizenberg's team are made of LCEs cast into arbitrary shapes that can deform in response to heat, light, and humidity, and whose specific reconfiguration is controlled by their own chemical and material properties.The researchers found that by exposing the LCE precursors to a magnetic field while they were being synthesized, all the liquid crystalline elements inside the LCEs lined up along the magnetic field and retained this molecular alignment after the polymer solidified.

By varying the direction of the magnetic field during this process, the scientists could dictate how the resulting LCE shapes would deform when heated to a temperature that disrupted the orientation of their liquid crystalline structures. When returned to ambient temperature, the deformed structures resumed their initial, internally oriented shape.

Such programmed shape changes could be used to create encrypted messages that are only revealed when heated to a specific temperature, actuators for tiny soft robots, or adhesive materials whose stickiness can be switched on and off. The system can also cause shapes to autonomously bend in directions that would usually require the input of some energy to achieve.

For example, an LCE plate was shown to not only undergo "traditional" out-of-plane bending, but also in-plane bending or twisting, elongation, and contraction. Additionally, unique motions could be achieved by exposing different regions of an LCE structure to multiple magnetic fields during polymerization, which then deformed in different directions when heated.

The team was also able to program their LCE shapes to reconfigure themselves in response to light by incorporating light-sensitive cross-linking molecules into the structure during polymerization. Then, when the structure was illuminated from a certain direction, the side facing the light contracted, causing the entire shape to bend toward the light. This type of self-regulated motion allows LCEs to deform in response to their environment and continuously reorient themselves to autonomously follow the light.

Additionally, LCEs can be created with both heat- and light-responsive properties, such that a single-material structure is now capable of multiple forms of movement and response mechanisms.

One exciting application of these multiresponsive LCEs is the creation of solar panels covered with microstructures that turn to follow the sun as it moves across the sky like a sunflower, thus resulting in more efficient light capture. The technology could also form the basis of autonomous source-following radios, multilevel encryption, sensors, and smart buildings.

"Our lab currently has several ongoing projects in which we're working on controlling the chemistry of these LCEs to enable unique, previously unseen deformation behaviors, as we believe these dynamic bioinspired structures have the potential to find use in a number of fields," said Aizenberg, who is also the Amy Smith Berylson Professor of Material Science at SEAS.

"Asking fundamental questions about how Nature works and whether it is possible to replicate biological structures and processes in the lab is at the core of the Wyss Institute's values, and can often lead to innovations that not only match Nature's abilities, but improve on them to create new materials and devices that would not exist otherwise," said Wyss Institute Founding Director Donald Ingber, M.D., Ph.D., who is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and the Vascular Biology Program at Boston Children's Hospital, as well as Professor of Bioengineering at SEAS.


Related Links
Wyss Institute for Biologically Inspired Engineering at Harvard
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Green finance blooms as investors look beyond profits
Paris (AFP) Dec 1, 2018
Environment-friendly finance is blooming thanks to investors willing to weigh profits against ecology, but decisions about meaningful investments can be complex. At first sight the idea of "green finance" as a vehicle to protect the environment or help businesses in their transition towards a more sustainable future seems non-controversial. But in fact, green finance lumps together a dizzying array of options and a debate is raging over which ones are truly worthy of green investor money - and ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
What happens when materials take tiny hits

SUTD researchers discover new black silver nanomaterial

Force Push VR brings Jedi powers to life

Borophene advances as 2D materials platform

SOLAR DAILY
Boeing tapped by Air Force for jam-resistant satellite comms terminals

Navy nanosatellite launch delayed for further inspection

Rockwell Collins airborne radio certified by NSA

NSA certifies Harris AN/PRC-163 radio for top secret intelligence

SOLAR DAILY
SOLAR DAILY
Beijing's space navigation BeiDou program seeks to dethrone US-owned GPS platform

China expands use of BeiDou navigation system in transportation

China launches twin BeiDou navigation satellites

Finland summons Russian ambassador over GPS blocking claims

SOLAR DAILY
New-found debris believed from Flight MH370 handed to Malaysia govt

Lockheed Martin to study U.S. Navy F-35 operational capability

Northrop Grumman, Harris partner on jammers for the EA-18 Growler

Presidential helicopters to receive rework by Sikorsky

SOLAR DAILY
Colloidal quantum dots make LEDs shine bright in the infrared

Quantum computing at scale: Australian scientists achieve compact, sensitive qubit readout

An accelerator on a microchip

Living electrodes with bacteria and organic electronics

SOLAR DAILY
Extreme weather 'major' issue for Tokyo 2020

New insight into ocean-atmosphere interaction and subsequent cloud formation

SSTL releases first images from S-Band Synthetic Aperture Radar satellite, NovaSAR-1

Australia's spring brings fires, snow, wild winds and dust storms

SOLAR DAILY
Indonesian island clean-up nets 40 tons of rubbish daily

Madrid launches drastic traffic limits to ease pollution

Honduran court convicts seven in murder of environmental activist

Newly discovered deep-sea microbes gobble greenhouse gases and perhaps oil spills, too









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.