Space Industry and Business News  
STELLAR CHEMISTRY
Meteoritic stardust unlocks timing of supernova dust formation
by Staff Writers
Washington DC (SPX) Jan 19, 2018


An electron microscope image of a micron-sized supernova silicon carbide, SiC, stardust grain (lower right) extracted from a primitive meteorite. Such grains originated more than 4.6 billion years ago in the ashes of Type II supernovae, typified here (upper left) by a Hubble Space Telescope image of the Crab Nebula, the remnant of a supernova explosion in 1054. Laboratory analysis of such tiny dust grains provides unique information on these massive stellar explosions. (1 um is one millionth of a meter.)

Dust is everywhere - not just in your attic or under your bed, but also in outer space. To astronomers, dust can be a nuisance by blocking the light of distant stars, or it can be a tool to study the history of our universe, galaxy, and Solar System.

For example, astronomers have been trying to explain why some recently discovered distant, but young, galaxies contain massive amounts of dust. These observations indicate that type II supernovae - explosions of stars more than ten times as massive as the Sun - produce copious amounts of dust, but how and when they do so is not well understood.

New work from a team of Carnegie cosmochemists published by Science Advances reports analyses of carbon-rich dust grains extracted from meteorites that show that these grains formed in the outflows from one or more type II supernovae more than two years after the progenitor stars exploded. This dust was then blown into space to be eventually incorporated into new stellar systems, including in this case, our own.

The researchers - led by postdoctoral researcher Nan Liu, along with Larry Nittler, Conel Alexander, and Jianhua Wang of Carnegie's Department of Terrestrial Magnetism - came to their conclusion not by studying supernovae with telescopes.

Rather, they analyzed microscopic silicon carbide, SiC, dust grains that formed in supernovae more than 4.6 billion years ago and were trapped in meteorites as our Solar System formed from the ashes of the galaxy's previous generations of stars.

Some meteorites have been known for decades to contain a record of the original building blocks of the Solar System, including stardust grains that formed in prior generations of stars.

"Because these presolar grains are literally stardust that can be studied in detail in the laboratory," explained Nittler, "they are excellent probes of a range of astrophysical processes."

For this study, the team set out to investigate the timing of supernova dust formation by measuring isotopes - versions of elements with the same number of protons but different numbers of neutrons - in rare presolar silicon carbide grains with compositions indicating that they formed in type II supernovae.

Certain isotopes enable scientists to establish a time frame for cosmic events because they are radioactive. In these instances, the number of neutrons present in the isotope make it unstable. To gain stability, it releases energetic particles in a way that alters the number of protons and neutrons, transmuting it into a different element.

The Carnegie team focused on a rare isotope of titanium, titanium-49, because this isotope is the product of radioactive decay of vanadium-49 which is produced during supernova explosions and transmutes into titanium-49 with a half-life of 330 days. How much titanium-49 gets incorporated into a supernova dust grain thus depends on when the grain forms after the explosion.

Using a state-of-the-art mass spectrometer to measure the titanium isotopes in supernova SiC grains with much better precision than could be accomplished by previous studies, the team found that the grains must have formed at least two years after their massive parent stars exploded.

Because presolar supernova graphite grains are isotopically similar in many ways to the SiC grains, the team also argues that the delayed formation timing applies generally to carbon-rich supernova dust, in line with some recent theoretical calculations.

"This dust-formation process can occur continuously for years, with the dust slowly building up over time, which aligns with astronomer's observations of varying amounts of dust surrounding the sites of stellar explosions," added lead author Liu.

"As we learn more about the sources for dust, we can gain additional knowledge about the history of the universe and how various stellar objects within it evolve."

STELLAR CHEMISTRY
How massive can neutron stars be
Frankfurt, Germany (SPX) Jan 17, 2018
Since their discovery in the 1960s, scientists have sought to answer an important question: How massive can neutron stars actually become? By contrast to black holes, these stars cannot gain in mass arbitrarily; past a certain limit there is no physical force in nature that can counter their enormous gravitational force. For the first time, astrophysicists at Goethe University Frankfurt have suc ... read more

Related Links
Carnegie Institution for Science
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Applications now open for the Space Debris Training Course

Breaking bad metals with neutrons

Russian scientists found excitons in nickel oxide for the first time

NASA team first to demonstrate x-ray navigation in space

STELLAR CHEMISTRY
Grumman to support BACN airborne communications system

Map of ionospheric disturbances to help improve radio network systems

Military defense market faces new challenges to acquiring SatCom platforms

Harris contracted by Army for radios for security force assistance brigades

STELLAR CHEMISTRY
STELLAR CHEMISTRY
China sends twin BeiDou-3 navigation satellites into space

18 satellites in exactEarth's real-time constellation now in service

'Quantum radio' may aid communications and mapping indoors, underground and underwater

Raytheon to provide GPS-guided artillery shells

STELLAR CHEMISTRY
First C-130J Super Hercules arrives in France

Airbus delivers first upgraded Tiger helicopter to French armed forces

Pentagon awards contract to Gulfstream for service on C-20, C-37

Lockheed awarded $7.5M contract to move F-35 support to Florida

STELLAR CHEMISTRY
US electronics innovation leaps forward via joint university microelectronics program

Mysteries of a promising spintronic material revealed

A major step forward in organic electronics

Nanostructure boosts stability of organic thin-film transistors

STELLAR CHEMISTRY
Satellites paint a detailed picture of maritime activity

'First Light' images from CERES FM6 Earth-observing instrument

Himawari-8 data simulation allows 10-min updates of rain and flood predictions

Japan forecasting breakthrough could improve weather warnings

STELLAR CHEMISTRY
New research to help reduce number of algae blooms that form annually

US Interior Department welcomes National Park board resignations

Microwaves could be as bad for the environment as cars suggests new research

Thames paddle-boarders try to turn the tide on plastic









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.