Space Industry and Business News  
TECTONICS
Measuring a crucial mineral in the mantle
by Staff Writers
Newark DE (SPX) Sep 15, 2017


Jessica Warren, Assistant Professor of Geological Sciences (right), and her graduate student Katie Kumamoto, have been working to develop more accurate means of determining the strength of olivine, a magnesium iron silicate which is one of Earth's most common minerals by volume. Image courtesy Evan Krape and University of Delaware.

University of Delaware professor Jessica Warren and colleagues from Stanford University, Oxford University and University of Pennsylvania, reported new data that material size-effects matter in plate tectonics. Plate tectonics, the way the Earth's plates move apart and come back together, has been used since the 1960s to explain the location of volcanoes and earthquakes.

The study (link here) published Wednesday, Sept. 13 in the American Association for the Advancement of Science journal Science Advances, resolves 40 years of disagreement in datasets about the strength of olivine, the most abundant mineral found in the upper 250 miles or so of the Earth, known as the mantle.

"Measuring the strength of olivine is critical to understanding how strong tectonic plates are, which, in turn, matters to how plates break and create subduction zones like those along the Cascadia plate, which runs down the west coast of Canada to the west coast of the United States," said Warren, a geologist in the College of Earth, Ocean, and Environment. It's also important for understanding how plates move around over the million-year time scales.

The paper demonstrated that olivine's strength is size-sensitive and that olivine is stronger the smaller the volume that is measured, something that has been known in materials science for many metals and ceramics, but has not been studied in a geological material before.

Warren explained that the problem with studying rocks on the earth's surface is that they are no longer subjected to the high pressures found inside the earth that cause materials to flow (like ice in a glacier). Recreating these elevated pressures in the laboratory is difficult, making it hard for scientists to study material strength in the lab.

The researchers used a technique, called instrumented nanoindentation, to measure olivine's strength. The technique allowed them to recreate pressure conditions similar to those inside the earth by pressing a diamond tip that was carefully machined to a specific geometry into the olivine crystal to measure the material's response.

The diamond tips ranged in size from 5 to 20 microns (0.000001 meter). The researchers performed hundreds of indentation tests on tiny olivine crystals less than a centimeter square and found that the olivine crystal became weaker as the size of the diamond tip increased.

To validate this size-effect, the researchers reviewed the available literature data on the strength of olivine to determine the sizes and areas that had been tested in previous experiments dating to the late 1970s. The size-effect showed up in the old data, too.

"The reason 40 years' worth of data don't agree from one experiment to the next is because scientists were measuring different sizes or areas of olivine," Warren said. "But if you plot the same information as a function of the sample size, the datasets, in fact agree, and display the same general trend - the larger the indentation in the material tested, the weaker the olivine becomes."

Now that Warren and her colleagues understand this size-effect, they are turning their attention to how temperature affects the strength of olivine, and more broadly, on where tectonic plates might break and give rise to potential subduction zones.

Temperatures inside the earth are much hotter than on the surface and can range from 1,470 to 2,200 degrees Fahrenheit (800 to 1,200 degrees Celsius).

The team also will consider what role water plays in the structure of olivine minerals and rocks in the earth. According to Warren, current estimates suggest the earth contains the equivalent of 50 percent to 4 times the amount of water found in the global ocean.

"When geologists look at how faults buckle and deform, it is at a very small length scale where conditions in size effect really matter, just like our olivine tests in the laboratory," Warren said. "But this size effect disappears when you get to a large enough length scale on tectonic plates, so we need to consider other things like when temperature and water begin to play a role."

TECTONICS
Sampling of the active alpine fault in New Zealand reveals extreme hydrothermal conditions
Osaka, Japan (SPX) Aug 31, 2017
A recent study published in Nature has demonstrated unusual heat generation and fluid movement in the Alpine Fault of New Zealand that has implications for understanding earthquakes in the region. Large plate-boundary faults, such as the Alpine Fault, are important areas of stress build-up and release, which can lead to earthquakes. There is increasing evidence that faults in such regions have l ... read more

Related Links
University of Delaware
Tectonic Science and News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECTONICS
New microscopy method for quick and reliable 3-D imaging of curvilinear nanostructures

Chinese video site offers virtual escape from 'boring' reality

Chinese video site offers virtual escape from 'boring' reality

Molecules move faster near sticky surfaces

TECTONICS
82nd Airborne tests in-flight communication system for paratroopers

Spectra Airbus SlingShot Partnership Extension

Northrop awarded contract for support of Air Force communications system

Industry team demonstrates Low Cost Terminal for AEHF satellites

TECTONICS
TECTONICS
Second Lockheed Martin GPS 3 Satellite completes launch simulation tests

Nine Satellites in exactEarth's Real-Time Constellation Now in Service

India to launch satellite next week to fix malfunctioning navigation system

Japan launches satellite for better GPS system

TECTONICS
Typhoon offered as F-16 replacement for Belgium

Air Traffic "Win-Win" Wins NASA Software of the Year

Boeing tips China to need $1.1 tn new planes over next 20 years

Airbus Perlan Mission II Soars Into History, Sets New World Record for Glider Altitude

TECTONICS
Trump blocks Chinese acquisition of US semiconductor firm

Toshiba: Japan's faded titan selling the family silver

Flip-flop qubits: Radical new quantum computing design invented

Researchers validate UV light's use in improving semiconductors

TECTONICS
Boeing to Design and Build Seven Medium Earth Orbit Satellites for SES

Airbus to reshape Earth observation market with its Pleiades Neo constellation

Ball Aerospace Delivers the JPSS-1 Weather Satellite to Launch Site

Ship exhaust helps grow bigger ocean thunderstorms

TECTONICS
Brexit a step away from pollution commitments, U.N. envoy says

UN slams UK government over 'plague' of air pollution

Sri Lanka bans plastic after garbage crisis

Brazil government freezes Amazon mining plans









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.