Space Industry and Business News  
Measuring The Density Of Ultra-Pure Water

View of the magnetic flotation equipment. The sinker lies on a holder whose weight is compensated by the buoyancy of a hollow sphere and of an adjusting weight.
by Staff Writers
Braunschweig, Germany (SPX) Dec 19, 2007
For oceanography - and there in particular for the description of ocean currents - accurate measurements of the density of sea water are of great importance. For this purpose, measuring instruments are needed which reach an uncertainty of approx. 0.001 kg/m3 (relative 1 . 10-6).

To be able to calibrate these measuring instruments, ultra-pure water is required as a reference fluid - the density of which can now be measured with the required accuracy over a large temperature range by means of the Magnetic Flotation Method which has been further developed at PTB.

Normally, the hydrostatic weighing method is used for measuring the density of liquids. Thereby, the density of the liquid is determined by means of Archimedes' principle from the buoyancy which is experienced by a sinker that plunges into the fluid. This method has several disadvantages which become apparent especially when water is to be measured. For this method, an open fluid tank is required into which the sinker - hanging on a wire - plunges.

At the point where the wire passes through the surface of the liquid into the water, a meniscus forms which, in the case of water, is extremely difficult to be reproduced and therefore contributes significantly to the measurement uncertainty. Along the wire, a temperature gradient occurs which, too, increases the measurement uncertainty. Due to the open system, the gas content of the water is difficult to control, but it alters the density.

In order to eliminate these sources of uncertainty, an apparatus has been developed in which the wire has been replaced by a magnetic coupling. In this magnetic flotation system, a small magnet is mounted at the holder of the sinker. By means of this magnet, and with the aid of a controllable magnetic field produced by an electromagnet, the sinker is kept in a fixed position. The current needed for this purpose is a measure for the buoyancy that is experienced by the sinker.

The fluid tank can almost be shut as the liquid is linked with the outside world only via a thin pipe by means of which the pressure can be regulated. In this way, it is possible to measure also with fully degassed water.

Thanks to the fact that the above-mentioned sources of uncertainty are avoided, measurements can be carried out with a repeatability standard deviation of approx. 2 � 10-7. The total measurement uncertainty of the water density measurement therefore reaches a value below 1 � 10-6. The measurements carried out with this new apparatus could confirm to a large extent the values delivered by foreign colleagues.

However, there are still discrepancies in the temperature range around 4 C, which is of great importance especially in oceanography. Therefore, there is still a great need for further research in this field.

Related Links
Physikalisch-Technische Bundesanstalt (PTB)
Water News - Science, Technology and Politics



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Cameroon, China strike water deal: report
Yaounde (AFP) Dec 17, 2007
Cameroon and China have clinched an agreement to increase water production and distribution in Cameroon's economic capital Douala, the government daily Cameroon Tribune reported Monday.







  • Industry Leaders Announce Open Platform For Mobile Devices
  • EU nations endorse standard system for mobile TV
  • Beyond Books: Virginia Tech Libraries In The Digital Age
  • Bee Strategy Helps Servers Run More Sweetly

  • Lightning Protection For The Next Generation Spacecraft
  • HISPASAT Chooses Arianespace To Launch The Amazonas 2 Satellite
  • Russia Tests Engine For Angara Carrier Rocket
  • United Launch Alliance Launches 2nd COSMO Satellite

  • Airbus close to sale of four factories: report
  • California urges regulation on aircraft emissions
  • Announcement Of Opportunity For Sounding Rocket And Balloon Flights
  • China to order up to 150 Airbus jets during Sarkozy visit: report

  • Northrop Grumman And L-3 To Work Together In Bid For US Navy's EPX Aircraft
  • Raytheon Technology Receives High Marks At Coalition Warrior Interoperability Demonstration
  • Northrop Grumman Develops World's Fastest Transistor To Support Military's Need For Higher Frequency And Bandwidth
  • Russia launches military satellite: agencies

  • Efficiency Of Satellite Telecommunications For Civil Protection Agencies
  • Russia And France Developing New Satellite Platform
  • Light Is Shed On New Fibre's Potential To Change Technology
  • Major Physics Breakthrough In Understanding Supersolidity

  • Iridium Satellite Appoints Leader For NEXT Development
  • Boeing Names Darryl Davis To Lead Advanced Systems For Integrated Defense Systems
  • Northrop Grumman Names John Landon VP Of Missiles, Technology And Space Programs
  • Dr Mary Cleave Appointed To Board Of Directors Of Sigma Space

  • Study Shows Urban Sprawl Continues To Gobble Up Land
  • ASU Researchers Use NASA Satellites To Improve Pollution Modeling
  • Outside View: Russia's new sats -- Part 2
  • Use Space Technology And IT For Rural Development

  • Lockheed Martin-Built GPS Satellite Poised For Liftoff From Cape Canaveral Launch Pad
  • Navteq Powers Innovative Lowrance Hybrid Portable Device
  • Columbus Announces Development Of Revolutionary System For Off-Road Navigation
  • Trimble Introduces Mobile Software Solution For Field Service Technicians

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement